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Chapter 1

BASIC AC THEORY
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1.1 What is alternating current (AC)?

Most students of electricity begin their study with what is known as direct current (DC), which
is electricity flowing in a constant direction, and/or possessing a voltage with constant polarity.
DC is the kind of electricity made by a battery (with definite positive and negative terminals),
or the kind of charge generated by rubbing certain types of materials against each other.

As useful and as easy to understand as DC is, it is not the only “kind” of electricity in use.
Certain sources of electricity (most notably, rotary electro-mechanical generators) naturally
produce voltages alternating in polarity, reversing positive and negative over time. Either as
a voltage switching polarity or as a current switching direction back and forth, this “kind” of
electricity is known as Alternating Current (AC): Figure 1.1

Whereas the familiar battery symbol is used as a generic symbol for any DC voltage source,
the circle with the wavy line inside is the generic symbol for any AC voltage source.

One might wonder why anyone would bother with such a thing as AC. It is true that in
some cases AC holds no practical advantage over DC. In applications where electricity is used
to dissipate energy in the form of heat, the polarity or direction of current is irrelevant, so
long as there is enough voltage and current to the load to produce the desired heat (power
dissipation). However, with AC it is possible to build electric generators, motors and power

1
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DIRECT CURRENT ALTERNATING CURRENT
(DC) (AC)
-~ | -~ | -
- @
| — ---= | —

Figure 1.1: Direct vs alternating current

distribution systems that are far more efficient than DC, and so we find AC used predominately
across the world in high power applications. To explain the details of why this is so, a bit of
background knowledge about AC is necessary.

If a machine is constructed to rotate a magnetic field around a set of stationary wire coils
with the turning of a shaft, AC voltage will be produced across the wire coils as that shaft
is rotated, in accordance with Faraday’s Law of electromagnetic induction. This is the basic
operating principle of an AC generator, also known as an alternator: Figure 1.2

Step #1 Step #2

D

no current!

VA
Load

Step #3

&

no current!

VA
Load

Figure 1.2: Alternator operation
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Notice how the polarity of the voltage across the wire coils reverses as the opposite poles of
the rotating magnet pass by. Connected to a load, this reversing voltage polarity will create a
reversing current direction in the circuit. The faster the alternator’s shaft is turned, the faster
the magnet will spin, resulting in an alternating voltage and current that switches directions
more often in a given amount of time.

While DC generators work on the same general principle of electromagnetic induction, their
construction is not as simple as their AC counterparts. With a DC generator, the coil of wire
is mounted in the shaft where the magnet is on the AC alternator, and electrical connections
are made to this spinning coil via stationary carbon “brushes” contacting copper strips on the
rotating shaft. All this is necessary to switch the coil’s changing output polarity to the external
circuit so the external circuit sees a constant polarity: Figure 1.3

vs(( &) Ins]
T

VWA
Load

(e | #3)
S

VWA VWA
Load Load

Figure 1.3: DC generator operation

The generator shown above will produce two pulses of voltage per revolution of the shaft,
both pulses in the same direction (polarity). In order for a DC generator to produce constant
voltage, rather than brief pulses of voltage once every 1/2 revolution, there are multiple sets
of coils making intermittent contact with the brushes. The diagram shown above is a bit more
simplified than what you would see in real life.

The problems involved with making and breaking electrical contact with a moving coil
should be obvious (sparking and heat), especially if the shaft of the generator is revolving
at high speed. If the atmosphere surrounding the machine contains flammable or explosive
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vapors, the practical problems of spark-producing brush contacts are even greater. An AC gen-
erator (alternator) does not require brushes and commutators to work, and so is immune to
these problems experienced by DC generators.

The benefits of AC over DC with regard to generator design is also reflected in electric
motors. While DC motors require the use of brushes to make electrical contact with moving
coils of wire, AC motors do not. In fact, AC and DC motor designs are very similar to their
generator counterparts (identical for the sake of this tutorial), the AC motor being dependent
upon the reversing magnetic field produced by alternating current through its stationary coils
of wire to rotate the rotating magnet around on its shaft, and the DC motor being dependent on
the brush contacts making and breaking connections to reverse current through the rotating
coil every 1/2 rotation (180 degrees).

So we know that AC generators and AC motors tend to be simpler than DC generators
and DC motors. This relative simplicity translates into greater reliability and lower cost of
manufacture. But what else is AC good for? Surely there must be more to it than design details
of generators and motors! Indeed there is. There is an effect of electromagnetism known as
mutual induction, whereby two or more coils of wire placed so that the changing magnetic field
created by one induces a voltage in the other. If we have two mutually inductive coils and we
energize one coil with AC, we will create an AC voltage in the other coil. When used as such,
this device is known as a transformer: Figure 1.4

Transformer

AC
voltage (Vv H Induced AC
sourge > voltage

o —
<<

Figure 1.4: Transformer “transforms” AC voltage and current.

The fundamental significance of a transformer is its ability to step voltage up or down from
the powered coil to the unpowered coil. The AC voltage induced in the unpowered (“secondary”)
coil is equal to the AC voltage across the powered (“primary”) coil multiplied by the ratio of
secondary coil turns to primary coil turns. If the secondary coil is powering a load, the current
through the secondary coil is just the opposite: primary coil current multiplied by the ratio
of primary to secondary turns. This relationship has a very close mechanical analogy, using
torque and speed to represent voltage and current, respectively: Figure 1.5

If the winding ratio is reversed so that the primary coil has less turns than the secondary
coil, the transformer “steps up” the voltage from the source level to a higher level at the load:
Figure 1.6

The transformer’s ability to step AC voltage up or down with ease gives AC an advantage
unmatched by DC in the realm of power distribution in figure 1.7. When transmitting electrical
power over long distances, it is far more efficient to do so with stepped-up voltages and stepped-
down currents (smaller-diameter wire with less resistive power losses), then step the voltage
back down and the current back up for industry, business, or consumer use.

Transformer technology has made long-range electric power distribution practical. Without
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Speed multiplication geartrain
"Step-down" transformer

Large gear
(many teeth)

Small gear high voltage

(few teeth)

Aﬁ low voltage
voltage man ~
source /\D ey =few turns S Load

high current

low torque

high speed low current

high torque
low speed

Figure 1.5: Speed multiplication gear train steps torque down and speed up. Step-down trans-
former steps voltage down and current up.

Speed reduction geartrain "Step-up” transformer

Large gear -
(many teeth) high voltage

Small gear

(few teeth) low voltage
AC = many turns % Load

voltage

source

low torque high torque low current

high speed low speed

Figure 1.6: Speed reduction gear train steps torque up and speed down. Step-up transformer
steps voltage up and current down.

high voltage

Power Plant \ ~._
Step-up A 00 A 0 AL A T
H .. . to other customers
low voltage

Step-down ——

Home or
Business low voltage

Figure 1.7: Transformers enable efficient long distance high voltage transmission of electric
energy.
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the ability to efficiently step voltage up and down, it would be cost-prohibitive to construct
power systems for anything but close-range (within a few miles at most) use.

As useful as transformers are, they only work with AC, not DC. Because the phenomenon of
mutual inductance relies on changing magnetic fields, and direct current (DC) can only produce
steady magnetic fields, transformers simply will not work with direct current. Of course, direct
current may be interrupted (pulsed) through the primary winding of a transformer to create
a changing magnetic field (as is done in automotive ignition systems to produce high-voltage
spark plug power from a low-voltage DC battery), but pulsed DC is not that different from
AC. Perhaps more than any other reason, this is why AC finds such widespread application in
power systems.

e REVIEW:

e DC stands for “Direct Current,” meaning voltage or current that maintains constant po-
larity or direction, respectively, over time.

e AC stands for “Alternating Current,” meaning voltage or current that changes polarity or
direction, respectively, over time.

e AC electromechanical generators, known as alternators, are of simpler construction than
DC electromechanical generators.

e AC and DC motor design follows respective generator design principles very closely.

e A transformer is a pair of mutually-inductive coils used to convey AC power from one coil
to the other. Often, the number of turns in each coil is set to create a voltage increase or
decrease from the powered (primary) coil to the unpowered (secondary) coil.

e Secondary voltage = Primary voltage (secondary turns / primary turns)

e Secondary current = Primary current (primary turns / secondary turns)

1.2 AC waveforms

When an alternator produces AC voltage, the voltage switches polarity over time, but does
so in a very particular manner. When graphed over time, the “wave” traced by this voltage
of alternating polarity from an alternator takes on a distinct shape, known as a sine wave:
Figure 1.8

In the voltage plot from an electromechanical alternator, the change from one polarity to
the other is a smooth one, the voltage level changing most rapidly at the zero (“crossover”)
point and most slowly at its peak. If we were to graph the trigonometric function of “sine” over
a horizontal range of 0 to 360 degrees, we would find the exact same pattern as in Table 1.1.

The reason why an electromechanical alternator outputs sine-wave AC is due to the physics
of its operation. The voltage produced by the stationary coils by the motion of the rotating
magnet is proportional to the rate at which the magnetic flux is changing perpendicular to the
coils (Faraday’s Law of Electromagnetic Induction). That rate is greatest when the magnet
poles are closest to the coils, and least when the magnet poles are furthest away from the coils.
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(the sine wave)

Time —

Figure 1.8: Graph of AC voltage over time (the sine wave).

Table 1.1: Trigonometric “sine” function.

Angle (°) | sin(angle) | wave || Angle (°) | sin(angle) | wave
0 0.0000 Zero 180 0.0000 Zero
15 0.2588 + 195 -0.2588 -
30 0.5000 + 210 -0.5000 -
45 0.7071 + 225 -0.7071 -
60 0.8660 + 240 -0.8660 -
75 0.9659 + 255 -0.9659 -
90 1.0000 | +peak 270 -1.0000 | -peak
105 0.9659 + 285 -0.9659 -
120 0.8660 + 300 -0.8660 -
135 0.7071 + 315 -0.7071 -
150 0.5000 + 330 -0.5000 -
165 0.2588 + 345 -0.2588 -
180 0.0000 Zero 360 0.0000 Zero
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Mathematically, the rate of magnetic flux change due to a rotating magnet follows that of a
sine function, so the voltage produced by the coils follows that same function.

If we were to follow the changing voltage produced by a coil in an alternator from any
point on the sine wave graph to that point when the wave shape begins to repeat itself, we
would have marked exactly one cycle of that wave. This is most easily shown by spanning the
distance between identical peaks, but may be measured between any corresponding points on
the graph. The degree marks on the horizontal axis of the graph represent the domain of the
trigonometric sine function, and also the angular position of our simple two-pole alternator
shaft as it rotates: Figure 1.9

|«<— one wave cycle —»

|«<— one wave cycle —»]

Alternator shaft —
position (degrees)

Figure 1.9: Alternator voltage as function of shaft position (time).

Since the horizontal axis of this graph can mark the passage of time as well as shaft position
in degrees, the dimension marked for one cycle is often measured in a unit of time, most often
seconds or fractions of a second. When expressed as a measurement, this is often called the
period of a wave. The period of a wave in degrees is always 360, but the amount of time one
period occupies depends on the rate voltage oscillates back and forth.

A more popular measure for describing the alternating rate of an AC voltage or current
wave than period is the rate of that back-and-forth oscillation. This is called frequency. The
modern unit for frequency is the Hertz (abbreviated Hz), which represents the number of wave
cycles completed during one second of time. In the United States of America, the standard
power-line frequency is 60 Hz, meaning that the AC voltage oscillates at a rate of 60 complete
back-and-forth cycles every second. In Europe, where the power system frequency is 50 Hz,
the AC voltage only completes 50 cycles every second. A radio station transmitter broadcasting
at a frequency of 100 MHz generates an AC voltage oscillating at a rate of 100 million cycles
every second.

Prior to the canonization of the Hertz unit, frequency was simply expressed as “cycles per
second.” Older meters and electronic equipment often bore frequency units of “CPS” (Cycles
Per Second) instead of Hz. Many people believe the change from self-explanatory units like
CPS to Hertz constitutes a step backward in clarity. A similar change occurred when the unit
of “Celsius” replaced that of “Centigrade” for metric temperature measurement. The name
Centigrade was based on a 100-count (“Centi-”) scale (“-grade”) representing the melting and
boiling points of H5O, respectively. The name Celsius, on the other hand, gives no hint as to
the unit’s origin or meaning.
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Period and frequency are mathematical reciprocals of one another. That is to say, if a wave
has a period of 10 seconds, its frequency will be 0.1 Hz, or 1/10 of a cycle per second:

1

Frequency in Hertz = —
Period in seconds

An instrument called an oscilloscope, Figure 1.10, is used to display a changing voltage over
time on a graphical screen. You may be familiar with the appearance of an ECG or EKG (elec-
trocardiograph) machine, used by physicians to graph the oscillations of a patient’s heart over
time. The ECG is a special-purpose oscilloscope expressly designed for medical use. General-
purpose oscilloscopes have the ability to display voltage from virtually any voltage source,
plotted as a graph with time as the independent variable. The relationship between period
and frequency is very useful to know when displaying an AC voltage or current waveform on
an oscilloscope screen. By measuring the period of the wave on the horizontal axis of the oscil-
loscope screen and reciprocating that time value (in seconds), you can determine the frequency
in Hertz.

OSCILLOSCOPE
vertical
/ \ Y
1 ¥ ®
S— DC_GND _AC
V/div —
trigger @
———
timebase
— Am
._ X
) | ®
S—" DC_GND AC
s/div —
Frequency = L = ! = 62.5Hz

period 16 ms

Figure 1.10: Time period of sinewave is shown on oscilloscope.

Voltage and current are by no means the only physical variables subject to variation over
time. Much more common to our everyday experience is sound, which is nothing more than the
alternating compression and decompression (pressure waves) of air molecules, interpreted by
our ears as a physical sensation. Because alternating current is a wave phenomenon, it shares
many of the properties of other wave phenomena, like sound. For this reason, sound (especially
structured music) provides an excellent analogy for relating AC concepts.

In musical terms, frequency is equivalent to pitch. Low-pitch notes such as those produced
by a tuba or bassoon consist of air molecule vibrations that are relatively slow (low frequency).
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High-pitch notes such as those produced by a flute or whistle consist of the same type of vibra-
tions in the air, only vibrating at a much faster rate (higher frequency). Figure 1.11 is a table
showing the actual frequencies for a range of common musical notes.

Note Musical designation Frequency (in hertz)
A A, 220.00
A sharp (or B flat) A*or B° 233.08
B B, 246.94
C (middle) c 261.63
C sharp (or D flat) c*orD" 277.18
D D 293.66
D sharp (or E flat) D* or E 311.13
E E 329.63
F F 349.23
F sharp (or G flat) F orGP 369.99
G G 392.00
G sharp (or A flat) G" or A° 415.30
A A 440.00
A sharp (or B flat) A*orB° 466.16
B B 493.88
C ct 523.25

Figure 1.11: The frequency in Hertz (Hz) is shown for various musical notes.

Astute observers will notice that all notes on the table bearing the same letter designation
are related by a frequency ratio of 2:1. For example, the first frequency shown (designated with
the letter “A”) is 220 Hz. The next highest “A” note has a frequency of 440 Hz — exactly twice as
many sound wave cycles per second. The same 2:1 ratio holds true for the first A sharp (233.08
Hz) and the next A sharp (466.16 Hz), and for all note pairs found in the table.

Audibly, two notes whose frequencies are exactly double each other sound remarkably sim-
ilar. This similarity in sound is musically recognized, the shortest span on a musical scale
separating such note pairs being called an octave. Following this rule, the next highest “A”
note (one octave above 440 Hz) will be 880 Hz, the next lowest “A” (one octave below 220 Hz)
will be 110 Hz. A view of a piano keyboard helps to put this scale into perspective: Figure 1.12

As you can see, one octave is equal to seven white keys’ worth of distance on a piano key-
board. The familiar musical mnemonic (doe-ray-mee-fah-so-lah-tee) — yes, the same pattern
immortalized in the whimsical Rodgers and Hammerstein song sung in The Sound of Music —
covers one octave from C to C.

While electromechanical alternators and many other physical phenomena naturally pro-
duce sine waves, this is not the only kind of alternating wave in existence. Other “waveforms”
of AC are commonly produced within electronic circuitry. Here are but a few sample waveforms
and their common designations in figure 1.13
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Figure 1.12: An octave is shown on a musical keyboard.
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Figure 1.13: Some common waveshapes (waveforms).
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These waveforms are by no means the only kinds of waveforms in existence. They're simply
a few that are common enough to have been given distinct names. Even in circuits that are
supposed to manifest “pure” sine, square, triangle, or sawtooth voltage/current waveforms, the
real-life result is often a distorted version of the intended waveshape. Some waveforms are
so complex that they defy classification as a particular “type” (including waveforms associated
with many kinds of musical instruments). Generally speaking, any waveshape bearing close
resemblance to a perfect sine wave is termed sinusoidal, anything different being labeled as
non-sinusoidal. Being that the waveform of an AC voltage or current is crucial to its impact in
a circuit, we need to be aware of the fact that AC waves come in a variety of shapes.

e REVIEW:

e AC produced by an electromechanical alternator follows the graphical shape of a sine
wave.

e One cycle of a wave is one complete evolution of its shape until the point that it is ready
to repeat itself.

e The period of a wave is the amount of time it takes to complete one cycle.

e Frequency is the number of complete cycles that a wave completes in a given amount of
time. Usually measured in Hertz (Hz), 1 Hz being equal to one complete wave cycle per
second.

e Frequency = 1/(period in seconds)

1.3 Measurements of AC magnitude

So far we know that AC voltage alternates in polarity and AC current alternates in direction.
We also know that AC can alternate in a variety of different ways, and by tracing the alter-
nation over time we can plot it as a “waveform.” We can measure the rate of alternation by
measuring the time it takes for a wave to evolve before it repeats itself (the “period”), and
express this as cycles per unit time, or “frequency.” In music, frequency is the same as pitch,
which is the essential property distinguishing one note from another.

However, we encounter a measurement problem if we try to express how large or small an
AC quantity is. With DC, where quantities of voltage and current are generally stable, we have
little trouble expressing how much voltage or current we have in any part of a circuit. But how
do you grant a single measurement of magnitude to something that is constantly changing?

One way to express the intensity, or magnitude (also called the amplitude), of an AC quan-
tity is to measure its peak height on a waveform graph. This is known as the peak or crest
value of an AC waveform: Figure 1.14

Another way is to measure the total height between opposite peaks. This is known as the
peak-to-peak (P-P) value of an AC waveform: Figure 1.15

Unfortunately, either one of these expressions of waveform amplitude can be misleading
when comparing two different types of waves. For example, a square wave peaking at 10 volts
is obviously a greater amount of voltage for a greater amount of time than a triangle wave
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Figure 1.14: Peak voltage of a waveform.
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Figure 1.15: Peak-to-peak voltage of a waveform.
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Figure 1.16: A square wave produces a greater heating effect than the same peak voltage
triangle wave.
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peaking at 10 volts. The effects of these two AC voltages powering a load would be quite
different: Figure 1.16

One way of expressing the amplitude of different waveshapes in a more equivalent fashion
is to mathematically average the values of all the points on a waveform’s graph to a single,
aggregate number. This amplitude measure is known simply as the average value of the wave-
form. If we average all the points on the waveform algebraically (that is, to consider their sign,
either positive or negative), the average value for most waveforms is technically zero, because
all the positive points cancel out all the negative points over a full cycle: Figure 1.17

True average value of all points
(considering their signs) is zero!

Figure 1.17: The average value of a sinewave is zero.

This, of course, will be true for any waveform having equal-area portions above and below
the “zero” line of a plot. However, as a practical measure of a waveform’s aggregate value,
“average” is usually defined as the mathematical mean of all the points’ absolute values over a
cycle. In other words, we calculate the practical average value of the waveform by considering
all points on the wave as positive quantities, as if the waveform looked like this: Figure 1.18

Practical average of points, all
—values assumed to be positive.

Figure 1.18: Waveform seen by AC “average responding” meter.

Polarity-insensitive mechanical meter movements (meters designed to respond equally to
the positive and negative half-cycles of an alternating voltage or current) register in proportion
to the waveform’s (practical) average value, because the inertia of the pointer against the ten-
sion of the spring naturally averages the force produced by the varying voltage/current values
over time. Conversely, polarity-sensitive meter movements vibrate uselessly if exposed to AC
voltage or current, their needles oscillating rapidly about the zero mark, indicating the true
(algebraic) average value of zero for a symmetrical waveform. When the “average” value of a
waveform is referenced in this text, it will be assumed that the “practical” definition of average
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is intended unless otherwise specified.

Another method of deriving an aggregate value for waveform amplitude is based on the
waveform’s ability to do useful work when applied to a load resistance. Unfortunately, an AC
measurement based on work performed by a waveform is not the same as that waveform’s
“average” value, because the power dissipated by a given load (work performed per unit time)
is not directly proportional to the magnitude of either the voltage or current impressed upon
it. Rather, power is proportional to the square of the voltage or current applied to a resistance
(P = E2/R, and P = I’R). Although the mathematics of such an amplitude measurement might
not be straightforward, the utility of it is.

Consider a bandsaw and a jigsaw, two pieces of modern woodworking equipment. Both
types of saws cut with a thin, toothed, motor-powered metal blade to cut wood. But while
the bandsaw uses a continuous motion of the blade to cut, the jigsaw uses a back-and-forth
motion. The comparison of alternating current (AC) to direct current (DC) may be likened to
the comparison of these two saw types: Figure 1.19

Bandsaw

Jigsaw
blade
motlonl
wood
wood T l*
1
1
blade
motion
(analogous to DC) (analogous to AC)

Figure 1.19: Bandsaw-jigsaw analogy of DC vs AC.

The problem of trying to describe the changing quantities of AC voltage or current in a
single, aggregate measurement is also present in this saw analogy: how might we express the
speed of a jigsaw blade? A bandsaw blade moves with a constant speed, similar to the way DC
voltage pushes or DC current moves with a constant magnitude. A jigsaw blade, on the other
hand, moves back and forth, its blade speed constantly changing. What is more, the back-and-
forth motion of any two jigsaws may not be of the same type, depending on the mechanical
design of the saws. One jigsaw might move its blade with a sine-wave motion, while another
with a triangle-wave motion. To rate a jigsaw based on its peak blade speed would be quite
misleading when comparing one jigsaw to another (or a jigsaw with a bandsaw!). Despite the
fact that these different saws move their blades in different manners, they are equal in one
respect: they all cut wood, and a quantitative comparison of this common function can serve
as a common basis for which to rate blade speed.

Picture a jigsaw and bandsaw side-by-side, equipped with identical blades (same tooth
pitch, angle, etc.), equally capable of cutting the same thickness of the same type of wood at the
same rate. We might say that the two saws were equivalent or equal in their cutting capacity.
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Might this comparison be used to assign a “bandsaw equivalent” blade speed to the jigsaw’s
back-and-forth blade motion; to relate the wood-cutting effectiveness of one to the other? This
is the general idea used to assign a “DC equivalent” measurement to any AC voltage or cur-
rent: whatever magnitude of DC voltage or current would produce the same amount of heat
energy dissipation through an equal resistance:Figure 1.20

<«—5A RMS---» <—5A
10V 20 %{ 10V — 2Q %
RMS \ —|_ \
—~-- A RMS — 50 W 5A—= 5H50W
power power
\ dissipated / dissipated

Equal power dissipated through
equal resistance loads

Figure 1.20: An RMS voltage produces the same heating effect as a the same DC voltage

In the two circuits above, we have the same amount of load resistance (2 ?) dissipating the
same amount of power in the form of heat (50 watts), one powered by AC and the other by
DC. Because the AC voltage source pictured above is equivalent (in terms of power delivered
to a load) to a 10 volt DC battery, we would call this a “10 volt” AC source. More specifically,
we would denote its voltage value as being 10 volts RMS. The qualifier “RMS” stands for
Root Mean Square, the algorithm used to obtain the DC equivalent value from points on a
graph (essentially, the procedure consists of squaring all the positive and negative points on a
waveform graph, averaging those squared values, then taking the square root of that average
to obtain the final answer). Sometimes the alternative terms equivalent or DC equivalent are
used instead of “RMS,” but the quantity and principle are both the same.

RMS amplitude measurement is the best way to relate AC quantities to DC quantities, or
other AC quantities of differing waveform shapes, when dealing with measurements of elec-
tric power. For other considerations, peak or peak-to-peak measurements may be the best to
employ. For instance, when determining the proper size of wire (ampacity) to conduct electric
power from a source to a load, RMS current measurement is the best to use, because the prin-
cipal concern with current is overheating of the wire, which is a function of power dissipation
caused by current through the resistance of the wire. However, when rating insulators for
service in high-voltage AC applications, peak voltage measurements are the most appropriate,
because the principal concern here is insulator “flashover” caused by brief spikes of voltage,
irrespective of time.

Peak and peak-to-peak measurements are best performed with an oscilloscope, which can
capture the crests of the waveform with a high degree of accuracy due to the fast action of
the cathode-ray-tube in response to changes in voltage. For RMS measurements, analog meter
movements (D’Arsonval, Weston, iron vane, electrodynamometer) will work so long as they
have been calibrated in RMS figures. Because the mechanical inertia and dampening effects
of an electromechanical meter movement makes the deflection of the needle naturally pro-
portional to the average value of the AC, not the true RMS value, analog meters must be
specifically calibrated (or mis-calibrated, depending on how you look at it) to indicate voltage
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or current in RMS units. The accuracy of this calibration depends on an assumed waveshape,
usually a sine wave.

Electronic meters specifically designed for RMS measurement are best for the task. Some
instrument manufacturers have designed ingenious methods for determining the RMS value
of any waveform. One such manufacturer produces “T'rue-RMS” meters with a tiny resistive
heating element powered by a voltage proportional to that being measured. The heating effect
of that resistance element is measured thermally to give a true RMS value with no mathemat-
ical calculations whatsoever, just the laws of physics in action in fulfillment of the definition of
RMS. The accuracy of this type of RMS measurement is independent of waveshape.

For “pure” waveforms, simple conversion coefficients exist for equating Peak, Peak-to-Peak,
Average (practical, not algebraic), and RMS measurements to one another: Figure 1.21

o
|

RMS = 0.707 (Peak)

RMS = Peak RMS = 0.577 (Peak)
AVG = 0.637 (Peak)

AVG = Peak AVG = 0.5 (Peak)
P-P = 2 (Peak)

P-P =2 (Peak) P-P =2 (Peak)

Figure 1.21: Conversion factors for common waveforms.

In addition to RMS, average, peak (crest), and peak-to-peak measures of an AC waveform,
there are ratios expressing the proportionality between some of these fundamental measure-
ments. The crest factor of an AC waveform, for instance, is the ratio of its peak (crest) value
divided by its RMS value. The form factor of an AC waveform is the ratio of its RMS value
divided by its average value. Square-shaped waveforms always have crest and form factors
equal to 1, since the peak is the same as the RMS and average values. Sinusoidal waveforms
have an RMS value of 0.707 (the reciprocal of the square root of 2) and a form factor of 1.11
(0.707/0.636). Triangle- and sawtooth-shaped waveforms have RMS values of 0.577 (the recip-
rocal of square root of 3) and form factors of 1.15 (0.577/0.5).

Bear in mind that the conversion constants shown here for peak, RMS, and average ampli-
tudes of sine waves, square waves, and triangle waves hold true only for pure forms of these
waveshapes. The RMS and average values of distorted waveshapes are not related by the same
ratios: Figure 1.22

RMS = ???
AVG = ?7?
P-P =2 (Peak)

Figure 1.22: Arbitrary waveforms have no simple conversions.

This is a very important concept to understand when using an analog D’Arsonval meter
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movement to measure AC voltage or current. An analog D’Arsonval movement, calibrated to
indicate sine-wave RMS amplitude, will only be accurate when measuring pure sine waves.
If the waveform of the voltage or current being measured is anything but a pure sine wave,
the indication given by the meter will not be the true RMS value of the waveform, because
the degree of needle deflection in an analog D’Arsonval meter movement is proportional to the
average value of the waveform, not the RMS. RMS meter calibration is obtained by “skewing”
the span of the meter so that it displays a small multiple of the average value, which will be
equal to be the RMS value for a particular waveshape and a particular waveshape only.

Since the sine-wave shape is most common in electrical measurements, it is the waveshape
assumed for analog meter calibration, and the small multiple used in the calibration of the me-
ter is 1.1107 (the form factor: 0.707/0.636: the ratio of RMS divided by average for a sinusoidal
waveform). Any waveshape other than a pure sine wave will have a different ratio of RMS and
average values, and thus a meter calibrated for sine-wave voltage or current will not indicate
true RMS when reading a non-sinusoidal wave. Bear in mind that this limitation applies only
to simple, analog AC meters not employing “True-RMS” technology.

e REVIEW:

e The amplitude of an AC waveform is its height as depicted on a graph over time. An am-
plitude measurement can take the form of peak, peak-to-peak, average, or RMS quantity.

e Peak amplitude is the height of an AC waveform as measured from the zero mark to the
highest positive or lowest negative point on a graph. Also known as the crest amplitude
of a wave.

e Peak-to-peak amplitude is the total height of an AC waveform as measured from maxi-
mum positive to maximum negative peaks on a graph. Often abbreviated as “P-P”.

e Average amplitude is the mathematical “mean” of all a waveform’s points over the period
of one cycle. Technically, the average amplitude of any waveform with equal-area portions
above and below the “zero” line on a graph is zero. However, as a practical measure of
amplitude, a waveform’s average value is often calculated as the mathematical mean of
all the points’ absolute values (taking all the negative values and considering them as
positive). For a sine wave, the average value so calculated is approximately 0.637 of its
peak value.

e “RMS” stands for Root Mean Square, and is a way of expressing an AC quantity of volt-
age or current in terms functionally equivalent to DC. For example, 10 volts AC RMS is
the amount of voltage that would produce the same amount of heat dissipation across a
resistor of given value as a 10 volt DC power supply. Also known as the “equivalent” or
“DC equivalent” value of an AC voltage or current. For a sine wave, the RMS value is
approximately 0.707 of its peak value.

e The crest factor of an AC waveform is the ratio of its peak (crest) to its RMS value.
e The form factor of an AC waveform is the ratio of its RMS value to its average value.

e Analog, electromechanical meter movements respond proportionally to the average value
of an AC voltage or current. When RMS indication is desired, the meter’s calibration
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must be “skewed” accordingly. This means that the accuracy of an electromechanical
meter’s RMS indication is dependent on the purity of the waveform: whether it is the

exact same waveshape as the waveform used in calibrating.

1.4 Simple AC circuit calculations

Over the course of the next few chapters, you will learn that AC circuit measurements and cal-
culations can get very complicated due to the complex nature of alternating current in circuits
with inductance and capacitance. However, with simple circuits (figure 1.23) involving nothing
more than an AC power source and resistance, the same laws and rules of DC apply simply

and directly.

10v (V)

Rs

R% 500 Q

WA
400 Q

Figure 1.23: AC circuit calculations for resistive circuits are the same as for DC.

Rioa =R1 + Ry + Ry

= Etota 10V
total — =

° Riota totdl 1kQ
Eri = lioaR1 Ers = lioaR2
Eri=1V Er, =5V

Series resistances still add, parallel resistances still diminish, and the Laws of Kirchhoff
and Ohm still hold true. Actually, as we will discover later on, these rules and laws always
hold true, its just that we have to express the quantities of voltage, current, and opposition to
current in more advanced mathematical forms. With purely resistive circuits, however, these
complexities of AC are of no practical consequence, and so we can treat the numbers as though

Ers = lioaRs
Ers =4V

we were dealing with simple DC quantities.
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Because all these mathematical relationships still hold true, we can make use of our famil-
iar “table” method of organizing circuit values just as with DC:

R, R, R, Total
E 1 5 4 10 Volts
I 10m 10m 10m 10m Amps
R 100 500 400 1k Ohms

One major caveat needs to be given here: all measurements of AC voltage and current
must be expressed in the same terms (peak, peak-to-peak, average, or RMS). If the source
voltage is given in peak AC volts, then all currents and voltages subsequently calculated are
cast in terms of peak units. If the source voltage is given in AC RMS volts, then all calculated
currents and voltages are cast in AC RMS units as well. This holds true for any calculation
based on Ohm’s Laws, Kirchhoff’s Laws, etc. Unless otherwise stated, all values of voltage and
current in AC circuits are generally assumed to be RMS rather than peak, average, or peak-to-
peak. In some areas of electronics, peak measurements are assumed, but in most applications
(especially industrial electronics) the assumption is RMS.

e REVIEW:

e All the old rules and laws of DC (Kirchhoff’s Voltage and Current Laws, Ohm’s Law) still
hold true for AC. However, with more complex circuits, we may need to represent the AC
quantities in more complex form. More on this later, I promise!

e The “table” method of organizing circuit values is still a valid analysis tool for AC circuits.

1.5 AC phase

Things start to get complicated when we need to relate two or more AC voltages or currents
that are out of step with each other. By “out of step,” I mean that the two waveforms are not
synchronized: that their peaks and zero points do not match up at the same points in time.
The graph in figure 1.24 illustrates an example of this.

A B A B
A B
A B
A B A B

Figure 1.24: Out of phase waveforms

The two waves shown above (A versus B) are of the same amplitude and frequency, but
they are out of step with each other. In technical terms, this is called a phase shift. Earlier
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we saw how we could plot a “sine wave” by calculating the trigonometric sine function for
angles ranging from 0 to 360 degrees, a full circle. The starting point of a sine wave was zero
amplitude at zero degrees, progressing to full positive amplitude at 90 degrees, zero at 180
degrees, full negative at 270 degrees, and back to the starting point of zero at 360 degrees. We
can use this angle scale along the horizontal axis of our waveform plot to express just how far
out of step one wave is with another: Figure 1.25

degrees

©) ©)
A 0 9 180 270 360 90 180 270 360

B 0O 9 180 270 360 90 180 270 360
() ()

degrees
Figure 1.25: Wave A leads wave B by 45°

The shift between these two waveforms is about 45 degrees, the “A” wave being ahead of
the “B” wave. A sampling of different phase shifts is given in the following graphs to better
illustrate this concept: Figure 1.26

Because the waveforms in the above examples are at the same frequency, they will be out of
step by the same angular amount at every point in time. For this reason, we can express phase
shift for two or more waveforms of the same frequency as a constant quantity for the entire
wave, and not just an expression of shift between any two particular points along the waves.
That is, it is safe to say something like, “voltage ’A’ is 45 degrees out of phase with voltage 'B’.”
Whichever waveform is ahead in its evolution is said to be leading and the one behind is said
to be lagging.

Phase shift, like voltage, is always a measurement relative between two things. There’s
really no such thing as a waveform with an absolute phase measurement because there’s no
known universal reference for phase. Typically in the analysis of AC circuits, the voltage
waveform of the power supply is used as a reference for phase, that voltage stated as “xxx
volts at 0 degrees.” Any other AC voltage or current in that circuit will have its phase shift
expressed in terms relative to that source voltage.

This is what makes AC circuit calculations more complicated than DC. When applying
Ohm’s Law and Kirchhoff’s Laws, quantities of AC voltage and current must reflect phase
shift as well as amplitude. Mathematical operations of addition, subtraction, multiplication,
and division must operate on these quantities of phase shift as well as amplitude. Fortunately,



22 CHAPTER 1. BASIC AC THEORY

Phase shift = 90 degrees
A B A'is ahead of B
(A "leads" B)

Phase shift = 90 degrees
B A B is ahead of A
(B "leads" A)

Phase shift = 180 degrees
A and B waveforms are
mirror-images of each other

Phase shift = 0 degrees
A'B A and B waveforms are
in perfect step with each other

Figure 1.26: Examples of phase shifts.
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there is a mathematical system of quantities called complex numbers ideally suited for this
task of representing amplitude and phase.

Because the subject of complex numbers is so essential to the understanding of AC circuits,
the next chapter will be devoted to that subject alone.

e REVIEW:
e Phase shift is where two or more waveforms are out of step with each other.

e The amount of phase shift between two waves can be expressed in terms of degrees, as
defined by the degree units on the horizontal axis of the waveform graph used in plotting
the trigonometric sine function.

e A leading waveform is defined as one waveform that is ahead of another in its evolution.
A lagging waveform is one that is behind another. Example:

Phase shift = 90 degrees
A B Aleads B; B lags A

e Calculations for AC circuit analysis must take into consideration both amplitude and
phase shift of voltage and current waveforms to be completely accurate. This requires
the use of a mathematical system called complex numbers.

1.6 Principles of radio

One of the more fascinating applications of electricity is in the generation of invisible ripples
of energy called radio waves. The limited scope of this lesson on alternating current does not
permit full exploration of the concept, some of the basic principles will be covered.

With Oersted’s accidental discovery of electromagnetism, it was realized that electricity and
magnetism were related to each other. When an electric current was passed through a conduc-
tor, a magnetic field was generated perpendicular to the axis of flow. Likewise, if a conductor
was exposed to a change in magnetic flux perpendicular to the conductor, a voltage was pro-
duced along the length of that conductor. So far, scientists knew that electricity and magnetism
always seemed to affect each other at right angles. However, a major discovery lay hidden just
beneath this seemingly simple concept of related perpendicularity, and its unveiling was one
of the pivotal moments in modern science.

This breakthrough in physics is hard to overstate. The man responsible for this concep-
tual revolution was the Scottish physicist James Clerk Maxwell (1831-1879), who “unified” the
study of electricity and magnetism in four relatively tidy equations. In essence, what he dis-
covered was that electric and magnetic fields were intrinsically related to one another, with or
without the presence of a conductive path for electrons to flow. Stated more formally, Maxwell’s
discovery was this:
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A changing electric field produces a perpendicular magnetic field, and
A changing magnetic field produces a perpendicular electric field.

All of this can take place in open space, the alternating electric and magnetic fields support-
ing each other as they travel through space at the speed of light. This dynamic structure of
electric and magnetic fields propagating through space is better known as an electromagnetic
wave.

There are many kinds of natural radiative energy composed of electromagnetic waves. Even
light is electromagnetic in nature. So are X-rays and “gamma” ray radiation. The only dif-
ference between these kinds of electromagnetic radiation is the frequency of their oscillation
(alternation of the electric and magnetic fields back and forth in polarity). By using a source of
AC voltage and a special device called an antenna, we can create electromagnetic waves (of a
much lower frequency than that of light) with ease.

An antenna is nothing more than a device built to produce a dispersing electric or magnetic
field. Two fundamental types of antennae are the dipole and the loop: Figure 1.27

Basic antenna designs

DIPOLE LoOP
")
I\
")
I\

Figure 1.27: Dipole and loop antennae

While the dipole looks like nothing more than an open circuit, and the loop a short circuit,
these pieces of wire are effective radiators of electromagnetic fields when connected to AC
sources of the proper frequency. The two open wires of the dipole act as a sort of capacitor
(two conductors separated by a dielectric), with the electric field open to dispersal instead of
being concentrated between two closely-spaced plates. The closed wire path of the loop antenna
acts like an inductor with a large air core, again providing ample opportunity for the field to
disperse away from the antenna instead of being concentrated and contained as in a normal
inductor.

As the powered dipole radiates its changing electric field into space, a changing magnetic
field is produced at right angles, thus sustaining the electric field further into space, and so
on as the wave propagates at the speed of light. As the powered loop antenna radiates its
changing magnetic field into space, a changing electric field is produced at right angles, with
the same end-result of a continuous electromagnetic wave sent away from the antenna. Either
antenna achieves the same basic task: the controlled production of an electromagnetic field.

When attached to a source of high-frequency AC power, an antenna acts as a transmitting
device, converting AC voltage and current into electromagnetic wave energy. Antennas also
have the ability to intercept electromagnetic waves and convert their energy into AC voltage
and current. In this mode, an antenna acts as a receiving device: Figure 1.28
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Figure 1.28: Basic radio transmitter and receiver

While there is much more that may be said about antenna technology, this brief introduction
is enough to give you the general idea of what’s going on (and perhaps enough information to
provoke a few experiments).

e REVIEW:

e James Maxwell discovered that changing electric fields produce perpendicular magnetic
fields, and vice versa, even in empty space.

e A twin set of electric and magnetic fields, oscillating at right angles to each other and
traveling at the speed of light, constitutes an electromagnetic wave.

e An antenna is a device made of wire, designed to radiate a changing electric field or
changing magnetic field when powered by a high-frequency AC source, or intercept an
electromagnetic field and convert it to an AC voltage or current.

e The dipole antenna consists of two pieces of wire (not touching), primarily generating an
electric field when energized, and secondarily producing a magnetic field in space.

e The loop antenna consists of a loop of wire, primarily generating a magnetic field when
energized, and secondarily producing an electric field in space.

1.7 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most
recent to first. See Appendix 2 (Contributor List) for dates and contact information.

Harvey Lew (February 7, 2004): Corrected typographical error: “circuit” should have been
“circle”.
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2.1 Introduction

If I needed to describe the distance between two cities, I could provide an answer consisting of
a single number in miles, kilometers, or some other unit of linear measurement. However, if I
were to describe how to travel from one city to another, I would have to provide more informa-
tion than just the distance between those two cities; I would also have to provide information
about the direction to travel, as well.

The kind of information that expresses a single dimension, such as linear distance, is called
a scalar quantity in mathematics. Scalar numbers are the kind of numbers you’ve used in most
all of your mathematical applications so far. The voltage produced by a battery, for example,
is a scalar quantity. So is the resistance of a piece of wire (ohms), or the current through it
(amps).

However, when we begin to analyze alternating current circuits, we find that quantities
of voltage, current, and even resistance (called impedance in AC) are not the familiar one-
dimensional quantities we’re used to measuring in DC circuits. Rather, these quantities, be-
cause they’re dynamic (alternating in direction and amplitude), possess other dimensions that

27
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must be taken into account. Frequency and phase shift are two of these dimensions that come
into play. Even with relatively simple AC circuits, where we’re only dealing with a single fre-
quency, we still have the dimension of phase shift to contend with in addition to the amplitude.

In order to successfully analyze AC circuits, we need to work with mathematical objects
and techniques capable of representing these multi-dimensional quantities. Here is where
we need to abandon scalar numbers for something better suited: complex numbers. Just like
the example of giving directions from one city to another, AC quantities in a single-frequency
circuit have both amplitude (analogy: distance) and phase shift (analogy: direction). A complex
number is a single mathematical quantity able to express these two dimensions of amplitude
and phase shift at once.

Complex numbers are easier to grasp when they’re represented graphically. If I draw a line
with a certain length (magnitude) and angle (direction), I have a graphic representation of a
complex number which is commonly known in physics as a vector: (Figure 2.1)

—_— -
length =7 length =10
angle = 0 degrees angle = 180 degrees
length=5 length =4
angle = 90 degrees angle = 270 degrees
(-90 degrees)
length = 9.43
length = 5.66 angle = 302.01 degrees
angle = 45 degrees (-57.99 degrees)

Figure 2.1: A vector has both magnitude and direction.

Like distances and directions on a map, there must be some common frame of reference for
angle figures to have any meaning. In this case, directly right is considered to be 0°, and angles
are counted in a positive direction going counter-clockwise: (Figure 2.2)

The idea of representing a number in graphical form is nothing new. We all learned this in
grade school with the “number line:” (Figure 2.3)

We even learned how addition and subtraction works by seeing how lengths (magnitudes)
stacked up to give a final answer: (Figure 2.4)

Later, we learned that there were ways to designate the values between the whole numbers
marked on the line. These were fractional or decimal quantities: (Figure 2.5)

Later yet we learned that the number line could extend to the left of zero as well: (Fig-
ure 2.6)
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The vector "compass"

90°

180° 0°

270° (-90°)

Figure 2.2: The vector compass

0 1 2 3 4 5 6 7 8 9 10
Figure 2.3: Number line.
5+3=8

I~ 8 -

[~ 5 3 —

I I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Figure 2.4: Addition on a “number line”.
3-1/2 or 3.5

| | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

Figure 2.5: Locating a fraction on the “number line”
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Figure 2.6: “Number line” shows both positive and negative numbers.

These fields of numbers (whole, integer, rational, irrational, real, etc.) learned in grade
school share a common trait: they’re all one-dimensional. The straightness of the number
line illustrates this graphically. You can move up or down the number line, but all “motion”
along that line is restricted to a single axis (horizontal). One-dimensional, scalar numbers are
perfectly adequate for counting beads, representing weight, or measuring DC battery voltage,
but they fall short of being able to represent something more complex like the distance and
direction between two cities, or the amplitude and phase of an AC waveform. To represent
these kinds of quantities, we need multidimensional representations. In other words, we need
a number line that can point in different directions, and that’s exactly what a vector is.

e REVIEW:

e A scalar number is the type of mathematical object that people are used to using in
everyday life: a one-dimensional quantity like temperature, length, weight, etc.

e A complex number is a mathematical quantity representing two dimensions of magnitude
and direction.

e A vector is a graphical representation of a complex number. It looks like an arrow, with
a starting point, a tip, a definite length, and a definite direction. Sometimes the word
phasor is used in electrical applications where the angle of the vector represents phase
shift between waveforms.

2.2 Vectors and AC waveforms

OK, so how exactly can we represent AC quantities of voltage or current in the form of a vector?
The length of the vector represents the magnitude (or amplitude) of the waveform, like this:
(Figure 2.7)

The greater the amplitude of the waveform, the greater the length of its corresponding
vector. The angle of the vector, however, represents the phase shift in degrees between the
waveform in question and another waveform acting as a “reference” in time. Usually, when the
phase of a waveform in a circuit is expressed, it is referenced to the power supply voltage wave-
form (arbitrarily stated to be “at” 0°). Remember that phase is always a relative measurement
between two waveforms rather than an absolute property. (Figure 2.8) (Figure 2.9)

The greater the phase shift in degrees between two waveforms, the greater the angle dif-
ference between the corresponding vectors. Being a relative measurement, like voltage, phase
shift (vector angle) only has meaning in reference to some standard waveform. Generally this
“reference” waveform is the main AC power supply voltage in the circuit. If there is more than
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Waveform Vector representation

TN .
% S

Amplitude |._ Length —>|

Figure 2.7: Vector length represents AC voltage magnitude.
Waveforms Phase relations Vector representations

(of "A" waveform with
reference to "B" waveform)

Phase shift = 0 degrees
A's A and B waveforms are — AB
in perfect step with each other

A
Phase shift = 90 degrees
£ Ais ahead of B 90 degrees
(A"leads"B)  L______ B
; Phase shift = 90 degrees ~ -oo- ~B
B/ B is ahead of A -90 degrees
(B "leads" A)
i
Phase shift = 180 degrees 180 degrees
A and B waveforms are A~——-- > B

mirror-images of each other

Figure 2.8: Vector angle is the phase with respect to another waveform.
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— ]
phase shift

Figure 2.9: Phase shift between waves and vector phase angle

one AC voltage source, then one of those sources is arbitrarily chosen to be the phase reference
for all other measurements in the circuit.

This concept of a reference point is not unlike that of the “ground” point in a circuit for
the benefit of voltage reference. With a clearly defined point in the circuit declared to be
“ground,” it becomes possible to talk about voltage “on” or “at” single points in a circuit, being
understood that those voltages (always relative between fwo points) are referenced to “ground.”
Correspondingly, with a clearly defined point of reference for phase it becomes possible to speak
of voltages and currents in an AC circuit having definite phase angles. For example, if the
current in an AC circuit is described as “24.3 milliamps at -64 degrees,” it means that the
current waveform has an amplitude of 24.3 mA, and it lags 64° behind the reference waveform,
usually assumed to be the main source voltage waveform.

e REVIEW:

e When used to describe an AC quantity, the length of a vector represents the amplitude
of the wave while the angle of a vector represents the phase angle of the wave relative to
some other (reference) waveform.

2.3 Simple vector addition

Remember that vectors are mathematical objects just like numbers on a number line: they
can be added, subtracted, multiplied, and divided. Addition is perhaps the easiest vector op-
eration to visualize, so we’ll begin with that. If vectors with common angles are added, their
magnitudes (lengths) add up just like regular scalar quantities: (Figure 2.10)

length=6  length=8 total length=6+8 =14
angle = 0 degrees  angle = 0 degrees angle = 0 degrees

Figure 2.10: Vector magnitudes add like scalars for a common angle.

Similarly, if AC voltage sources with the same phase angle are connected together in series,
their voltages add just as you might expect with DC batteries: (Figure 2.11)

Please note the (+) and (-) polarity marks next to the leads of the two AC sources. Even
though we know AC doesn’t have “polarity” in the same sense that DC does, these marks are
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6V 8V
Odeg+ Odeg+ 6V+ 8V+
VN VN i} I i} I
) ) 1] 1]
- +
- C:)L%;:/g > <—-+—>

Figure 2.11: “In phase” AC voltages add like DC battery voltages.

essential to knowing how to reference the given phase angles of the voltages. This will become
more apparent in the next example.

If vectors directly opposing each other (180° out of phase) are added together, their magni-
tudes (Iengths) subtract just like positive and negative scalar quantities subtract when added:
(Figure 2.12)

length = 6>angle =0 degrees

) length =8 angle = 180 degrees

total length = 6 - 8 = -2 at 0 degrees
- or 2 at 180 degrees

Figure 2.12: Directly opposing vector magnitudes subtract.

Similarly, if opposing AC voltage sources are connected in series, their voltages subtract as
you might expect with DC batteries connected in an opposing fashion: (Figure 2.13)

Determining whether or not these voltage sources are opposing each other requires an ex-
amination of their polarity markings and their phase angles. Notice how the polarity markings
in the above diagram seem to indicate additive voltages (from left to right, we see - and + on
the 6 volt source, - and + on the 8 volt source). Even though these polarity markings would
normally indicate an additive effect in a DC circuit (the two voltages working together to pro-
duce a greater total voltage), in this AC circuit they’re actually pushing in opposite directions
because one of those voltages has a phase angle of 0° and the other a phase angle of 180°. The
result, of course, is a total voltage of 2 volts.

We could have just as well shown the opposing voltages subtracting in series like this:
(Figure 2.14)

Note how the polarities appear to be opposed to each other now, due to the reversal of
wire connections on the 8 volt source. Since both sources are described as having equal phase
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6V
Odngr 180deJ9 6V+ +8V
VN VN " [ |-
) ) 1] 11
- +
D 2V N + -
D 180 deg "
\_/_\

Figure 2.13: Opposing AC voltages subtract like opposing battery voltages.

Figure 2.14: Opposing voltages in spite of equal phase angles.
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angles (0°), they truly are opposed to one another, and the overall effect is the same as the
former scenario with “additive” polarities and differing phase angles: a total voltage of only 2
volts. (Figure 2.15)

A
=
(o)
o
Q.
(1)

Q

Y

A
Y

2V
0 deg

Figure 2.15: Just as there are two ways to express the phase of the sources, there are two ways
to express the resultant their sum.

The resultant voltage can be expressed in two different ways: 2 volts at 180° with the (-)
symbol on the left and the (+) symbol on the right, or 2 volts at 0° with the (+) symbol on the
left and the (-) symbol on the right. A reversal of wires from an AC voltage source is the same
as phase-shifting that source by 180°. (Figure 2.16)

8V 8V
180 deg These voltage sources 0 deg

C + are equivalent! +C

Figure 2.16: Example of equivalent voltage sources.

2.4 Complex vector addition

If vectors with uncommon angles are added, their magnitudes (lengths) add up quite differ-
ently than that of scalar magnitudes: (Figure 2.17)

If two AC voltages — 90° out of phase — are added together by being connected in series, their
voltage magnitudes do not directly add or subtract as with scalar voltages in DC. Instead, these
voltage quantities are complex quantities, and just like the above vectors, which add up in a
trigonometric fashion, a 6 volt source at 0° added to an 8 volt source at 90° results in 10 volts
at a phase angle of 53.13°: (Figure 2.18)

Compared to DC circuit analysis, this is very strange indeed. Note that it is possible to
obtain voltmeter indications of 6 and 8 volts, respectively, across the two AC voltage sources,
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Vector addition

'eTgthgslfs 6 at 0 degrees
angle = 53. —
%egrees length = 8 + 8at 90 degrees
angle = 90 degrees
10 at 53.13 degrees
length =6

angle = 0 degrees

Figure 2.17: Vector magnitudes do not directly add for unequal angles.

(
¢

6V 8V
0 deg+ 90 deg+
7N 7N
) )
- Tov 1+,
53.13 deg

U

Figure 2.18: The 6V and 8V sources add to 10V with the help of trigonometry.



2.5. POLAR AND RECTANGULAR NOTATION 37

yet only read 10 volts for a total voltage!

There is no suitable DC analogy for what we're seeing here with two AC voltages slightly
out of phase. DC voltages can only directly aid or directly oppose, with nothing in between.
With AC, two voltages can be aiding or opposing one another to any degree between fully-
aiding and fully-opposing, inclusive. Without the use of vector (complex number) notation to
describe AC quantities, it would be very difficult to perform mathematical calculations for AC
circuit analysis.

In the next section, we’ll learn how to represent vector quantities in symbolic rather than
graphical form. Vector and triangle diagrams suffice to illustrate the general concept, but more
precise methods of symbolism must be used if any serious calculations are to be performed on
these quantities.

e REVIEW:

e DC voltages can only either directly aid or directly oppose each other when connected in
series. AC voltages may aid or oppose to any degree depending on the phase shift between
them.

2.5 Polar and rectangular notation

In order to work with these complex numbers without drawing vectors, we first need some kind
of standard mathematical notation. There are two basic forms of complex number notation:
polar and rectangular.

Polar form is where a complex number is denoted by the length (otherwise known as the
magnitude, absolute value, or modulus) and the angle of its vector (usually denoted by an
angle symbol that looks like this: /). To use the map analogy, polar notation for the vector
from New York City to San Diego would be something like “2400 miles, southwest.” Here are
two examples of vectors and their polar notations: (Figure 2.19)

8.06 [0 -29.74°
N_\oe [ 330.26%)
8.49 [ 45°

Note: the proper notation for designating a vector’s angle
is this symbol: O

T 530182 7.810 230.19°

(7.81 0 -129.81°)

Figure 2.19: Vectors with polar notations.
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Standard orientation for vector angles in AC circuit calculations defines 0° as being to the
right (horizontal), making 90° straight up, 180° to the left, and 270° straight down. Please note
that vectors angled “down” can have angles represented in polar form as positive numbers in
excess of 180, or negative numbers less than 180. For example, a vector angled / 270° (straight
down) can also be said to have an angle of -90°. (Figure 2.20) The above vector on the right
(7.81 / 230.19°) can also be denoted as 7.81 / -129.81°.

The vector "compass”

90°

180° o°

270° (-90°)
Figure 2.20: The vector compass

Rectangular form, on the other hand, is where a complex number is denoted by its re-
spective horizontal and vertical components. In essence, the angled vector is taken to be the
hypotenuse of a right triangle, described by the lengths of the adjacent and opposite sides.
Rather than describing a vector’s length and direction by denoting magnitude and angle, it is
described in terms of “how far left/right” and “how far up/down.”

These two dimensional figures (horizontal and vertical) are symbolized by two numerical
figures. In order to distinguish the horizontal and vertical dimensions from each other, the
vertical is prefixed with a lower-case “i” (in pure mathematics) or “” (in electronics). These
lower-case letters do not represent a physical variable (such as instantaneous current, also
symbolized by a lower-case letter “i”), but rather are mathematical operators used to distin-
guish the vector’s vertical component from its horizontal component. As a complete complex
number, the horizontal and vertical quantities are written as a sum: (Figure 2.21)

The horizontal component is referred to as the real component, since that dimension is
compatible with normal, scalar (“real”) numbers. The vertical component is referred to as the
imaginary component, since that dimension lies in a different direction, totally alien to the
scale of the real numbers. (Figure 2.22)

The “real” axis of the graph corresponds to the familiar number line we saw earlier: the one
with both positive and negative values on it. The “imaginary” axis of the graph corresponds to
another number line situated at 90° to the “real” one. Vectors being two-dimensional things,
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—_—
4+ija 4+j0
"4 right and 4 up” "4 right and 0 up/down”
-
4-ja -4 +j0
"4 right and 4 down" "4 left and O up/down"
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-4 +ij4
"4 left and 4 up”

-4 -j4
"4 left and 4 down"

Figure 2.21: In “rectangular” form the vector’s length and direction are denoted in terms of its
horizontal and vertical span, the first number representing the the horizontal (“real”) and the
second number (with the “j” prefix) representing the vertical (“imaginary”) dimensions.

+ "imaginary"
+

_ llrealll

+ ||rea|u

)
- "imaginary”

Figure 2.22: Vector compass showing real and imaginary axes
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we must have a two-dimensional “map” upon which to express them, thus the two number
lines perpendicular to each other: (Figure 2.23)

s

"imagina_ry"
number lihe | 2

—— "real" number line —

Figure 2.23: Vector compass with real and imaginary (“j”) number lines.

Either method of notation is valid for complex numbers. The primary reason for having
two methods of notation is for ease of longhand calculation, rectangular form lending itself to
addition and subtraction, and polar form lending itself to multiplication and division.

Conversion between the two notational forms involves simple trigonometry. To convert from
polar to rectangular, find the real component by multiplying the polar magnitude by the cosine
of the angle, and the imaginary component by multiplying the polar magnitude by the sine of
the angle. This may be understood more readily by drawing the quantities as sides of a right
triangle, the hypotenuse of the triangle representing the vector itself (its length and angle
with respect to the horizontal constituting the polar form), the horizontal and vertical sides
representing the “real” and “imaginary” rectangular components, respectively: (Figure 2.24)
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+j3

Figure 2.24: Magnitude vector in terms of real (4) and imaginary (j3) components.

50 36.87° (polar form)

(5)(cos36.87°) =4  (real component)
(5)(sin36.87°) =3 (imaginary component)

4+j3 (rectangular form)

To convert from rectangular to polar, find the polar magnitude through the use of the
Pythagorean Theorem (the polar magnitude is the hypotenuse of a right triangle, and the real
and imaginary components are the adjacent and opposite sides, respectively), and the angle by
taking the arctangent of the imaginary component divided by the real component:

4+]j3 (rectangular form)
c="Va+b? (pythagorean theorem)

polar magnitude ="V 4% + 3

polar magnitude = 5

_ 3
polar angle = arctan o

polar angle = 36.87°

5036.87°  (polar form)

e REVIEW:

e Polar notation denotes a complex number in terms of its vector’s length and angular
direction from the starting point. Example: fly 45 miles / 203° (West by Southwest).
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e Rectangular notation denotes a complex number in terms of its horizontal and vertical
dimensions. Example: drive 41 miles West, then turn and drive 18 miles South.

e In rectangular notation, the first quantity is the “real” component (horizontal dimension
of vector) and the second quantity is the “imaginary” component (vertical dimension of

vector). The imaginary component is preceded by a lower-case “j,” sometimes called the j
operator.

e Both polar and rectangular forms of notation for a complex number can be related graph-
ically in the form of a right triangle, with the hypotenuse representing the vector itself
(polar form: hypotenuse length = magnitude; angle with respect to horizontal side = an-
gle), the horizontal side representing the rectangular “real” component, and the vertical
side representing the rectangular “imaginary” component.

2.6 Complex number arithmetic

Since complex numbers are legitimate mathematical entities, just like scalar numbers, they
can be added, subtracted, multiplied, divided, squared, inverted, and such, just like any other
kind of number. Some scientific calculators are programmed to directly perform these opera-
tions on two or more complex numbers, but these operations can also be done “by hand.” This
section will show you how the basic operations are performed. It is highly recommended that
you equip yourself with a scientific calculator capable of performing arithmetic functions easily
on complex numbers. It will make your study of AC circuit much more pleasant than if you’re
forced to do all calculations the longer way.

Addition and subtraction with complex numbers in rectangular form is easy. For addition,
simply add up the real components of the complex numbers to determine the real component
of the sum, and add up the imaginary components of the complex numbers to determine the
imaginary component of the sum:

2+i5 175 - j34 -36+10
+4-j3 +80-j15 +20+j82
6+j2 255 - j49 16 +)92

When subtracting complex numbers in rectangular form, simply subtract the real compo-
nent of the second complex number from the real component of the first to arrive at the real
component of the difference, and subtract the imaginary component of the second complex
number from the imaginary component of the first to arrive the imaginary component of the
difference:

2+j5 175 - j34 -36+j10
- (4-3) - (80-j15) - (20+j82)
2+]8 95-19 -56-]72

For longhand multiplication and division, polar is the favored notation to work with. When
multiplying complex numbers in polar form, simply multiply the polar magnitudes of the com-
plex numbers to determine the polar magnitude of the product, and add the angles of the
complex numbers to determine the angle of the product:
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(35 0 65°)(10 O -12°) = 350 O 53°

(124 0 250°)(11 O 100°) = 1364 0 -10°
or
1364 [ 350°

(30 309(50-30% =150 0°

Division of polar-form complex numbers is also easy: simply divide the polar magnitude
of the first complex number by the polar magnitude of the second complex number to arrive
at the polar magnitude of the quotient, and subtract the angle of the second complex number
from the angle of the first complex number to arrive at the angle of the quotient:

0
B0 _gonp
(0]
% =11.273 [0 150°
(o]
IELSE PSP

To obtain the reciprocal, or “invert” (1/x), a complex number, simply divide the number (in
polar form) into a scalar value of 1, which is nothing more than a complex number with no
imaginary component (angle = 0):

0
! SRS L 0.02857 O -65°

350 65° 350 65°

1 100°

= =01012°
100-12° 100 -12°
0
1 - 100" _31050-10°
0.0032 0 10 0.0032 0 10

These are the basic operations you will need to know in order to manipulate complex num-
bers in the analysis of AC circuits. Operations with complex numbers are by no means limited
just to addition, subtraction, multiplication, division, and inversion, however. Virtually any
arithmetic operation that can be done with scalar numbers can be done with complex num-
bers, including powers, roots, solving simultaneous equations with complex coefficients, and
even trigonometric functions (although this involves a whole new perspective in trigonometry
called hyperbolic functions which is well beyond the scope of this discussion). Be sure that
you’re familiar with the basic arithmetic operations of addition, subtraction, multiplication,
division, and inversion, and you’ll have little trouble with AC circuit analysis.

e REVIEW:
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e To add complex numbers in rectangular form, add the real components and add the imag-
inary components. Subtraction is similar.

e To multiply complex numbers in polar form, multiply the magnitudes and add the angles.
To divide, divide the magnitudes and subtract one angle from the other.

2.7 More on AC ”polarity”

Complex numbers are useful for AC circuit analysis because they provide a convenient method
of symbolically denoting phase shift between AC quantities like voltage and current. However,
for most people the equivalence between abstract vectors and real circuit quantities is not an
easy one to grasp. Earlier in this chapter we saw how AC voltage sources are given voltage
figures in complex form (magnitude and phase angle), as well as polarity markings. Being that
alternating current has no set “polarity” as direct current does, these polarity markings and
their relationship to phase angle tends to be confusing. This section is written in the attempt
to clarify some of these issues.

Voltage is an inherently relative quantity. When we measure a voltage, we have a choice in
how we connect a voltmeter or other voltage-measuring instrument to the source of voltage, as
there are two points between which the voltage exists, and two test leads on the instrument
with which to make connection. In DC circuits, we denote the polarity of voltage sources and
voltage drops explicitly, using “+” and “-” symbols, and use color-coded meter test leads (red
and black). If a digital voltmeter indicates a negative DC voltage, we know that its test leads
are connected “backward” to the voltage (red lead connected to the “-” and black lead to the
“+7).

Batteries have their polarity designated by way of intrinsic symbology: the short-line side
of a battery is always the negative (-) side and the long-line side always the positive (+): (Fig-
ure 2.25)

6V

ilis

Figure 2.25: Conventional battery polarity.

Although it would be mathematically correct to represent a battery’s voltage as a negative
figure with reversed polarity markings, it would be decidedly unconventional: (Figure 2.26)

Figure 2.26: Decidedly unconventional polarity marking.
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Interpreting such notation might be easier if the “+” and “-” polarity markings were viewed
as reference points for voltmeter test leads, the “+” meaning “red” and the “-” meaning “black.”
A voltmeter connected to the above battery with red lead to the bottom terminal and black
lead to the top terminal would indeed indicate a negative voltage (-6 volts). Actually, this
form of notation and interpretation is not as unusual as you might think: it is commonly
encountered in problems of DC network analysis where “+” and “-” polarity marks are initially
drawn according to educated guess, and later interpreted as correct or “backward” according
to the mathematical sign of the figure calculated.

In AC circuits, though, we don’t deal with “negative” quantities of voltage. Instead, we
describe to what degree one voltage aids or opposes another by phase: the time-shift between
two waveforms. We never describe an AC voltage as being negative in sign, because the facility
of polar notation allows for vectors pointing in an opposite direction. If one AC voltage directly
opposes another AC voltage, we simply say that one is 180° out of phase with the other.

Still, voltage is relative between two points, and we have a choice in how we might connect
a voltage-measuring instrument between those two points. The mathematical sign of a DC
voltmeter’s reading has meaning only in the context of its test lead connections: which terminal
the red lead is touching, and which terminal the black lead is touching. Likewise, the phase
angle of an AC voltage has meaning only in the context of knowing which of the two points
is considered the “reference” point. Because of this fact, “+” and “-” polarity marks are often
placed by the terminals of an AC voltage in schematic diagrams to give the stated phase angle
a frame of reference.

Let’s review these principles with some graphical aids. First, the principle of relating test
lead connections to the mathematical sign of a DC voltmeter indication: (Figure 2.27)

The mathematical sign of a digital DC voltmeter’s display has meaning only in the context
of its test lead connections. Consider the use of a DC voltmeter in determining whether or
not two DC voltage sources are aiding or opposing each other, assuming that both sources
are unlabeled as to their polarities. Using the voltmeter to measure across the first source:
(Figure 2.28)

This first measurement of +24 across the left-hand voltage source tells us that the black
lead of the meter really is touching the negative side of voltage source #1, and the red lead of
the meter really is touching the positive. Thus, we know source #1 is a battery facing in this
orientation: (Figure 2.29)

Measuring the other unknown voltage source: (Figure 2.30)

This second voltmeter reading, however, is a negative (-) 17 volts, which tells us that the
black test lead is actually touching the positive side of voltage source #2, while the red test
lead is actually touching the negative. Thus, we know that source #2 is a battery facing in the
opposite direction: (Figure 2.31)

It should be obvious to any experienced student of DC electricity that these two batteries
are opposing one another. By definition, opposing voltages subtract from one another, so we
subtract 17 volts from 24 volts to obtain the total voltage across the two: 7 volts.

We could, however, draw the two sources as nondescript boxes, labeled with the exact volt-
age figures obtained by the voltmeter, the polarity marks indicating voltmeter test lead place-
ment: (Figure 2.32)

According to this diagram, the polarity marks (which indicate meter test lead placement)
indicate the sources aiding each other. By definition, aiding voltage sources add with one an-
other to form the total voltage, so we add 24 volts to -17 volts to obtain 7 volts: still the correct
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Figure 2.27: Test lead colors provide a frame of reference for interpreting the sign (+ or -) of

the meter’s indication.

The meter tells us +24 volts
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Total voltage?

Figure 2.28: (+) Reading indicates black is (-), red is (+).
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24 V
I
Source 1 Source 2

Total voltage?

Figure 2.29: 24V source is polarized (-) to (+).

- The meter tells us -17 volts
Q
[\N@[A
=Y, <A
9 ~ 1
A
EX, \Siurce 1 Sourciy
Total voltage?

Figure 2.30: (-) Reading indicates black is (+), red is (-).

24V 17V
| || || |
RN L

Source 1 Source 2

" Total voltage = 7 V +

Figure 2.31: 17V source is polarized (+) to (-)

24V -7V

Source 1 Source 2

Figure 2.32: Voltmeter readings as read from meters.
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answer. If we let the polarity markings guide our decision to either add or subtract voltage fig-
ures — whether those polarity markings represent the ¢true polarity or just the meter test lead
orientation — and include the mathematical signs of those voltage figures in our calculations,
the result will always be correct. Again, the polarity markings serve as frames of reference to
place the voltage figures’ mathematical signs in proper context.

The same is true for AC voltages, except that phase angle substitutes for mathematical
sign. In order to relate multiple AC voltages at different phase angles to each other, we need
polarity markings to provide frames of reference for those voltages’ phase angles. (Figure 2.33)

Take for example the following circuit:

10vO0° 6V O 45°
- + - +

VWA
14.861 V [0 16.59°

Figure 2.33: Phase angle substitutes for & sign.

The polarity markings show these two voltage sources aiding each other, so to determine
the total voltage across the resistor we must add the voltage figures of 10V 2 0° and 6 V / 45°
together to obtain 14.861 V / 16.59°. However, it would be perfectly acceptable to represent
the 6 volt source as 6 V / 225°, with a reversed set of polarity markings, and still arrive at the
same total voltage: (Figure 2.34)

wovoo 6V O 225°
- + + -

VWA
14.861V [0 16.59°

Figure 2.34: Reversing the voltmeter leads on the 6V source changes the phase angle by 180°.

6 V / 45° with negative on the left and positive on the right is exactly the same as 6 V
/ 225° with positive on the left and negative on the right: the reversal of polarity markings
perfectly complements the addition of 180° to the phase angle designation: (Figure 2.35)

Unlike DC voltage sources, whose symbols intrinsically define polarity by means of short
and long lines, AC voltage symbols have no intrinsic polarity marking. Therefore, any polarity
marks must be included as additional symbols on the diagram, and there is no one “correct”
way in which to place them. They must, however, correlate with the given phase angle to
represent the true phase relationship of that voltage with other voltages in the circuit.
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6_V U 4_?0

...Iisequivalentto. ..

6 Y U 22_5O

Figure 2.35: Reversing polarity adds 180°to phase angle

e REVIEW:

e Polarity markings are sometimes given to AC voltages in circuit schematics in order to
provide a frame of reference for their phase angles.

2.8 Some examples with AC circuits

Let’s connect three AC voltage sources in series and use complex numbers to determine addi-
tive voltages. All the rules and laws learned in the study of DC circuits apply to AC circuits
as well (Ohm’s Law, Kirchhoff’s Laws, network analysis methods), with the exception of power
calculations (Joule’s Law). The only qualification is that all variables must be expressed in
complex form, taking into account phase as well as magnitude, and all voltages and currents
must be of the same frequency (in order that their phase relationships remain constant). (Fig-
ure 2.36)

22V [ -64°

12V 0O 35°

w’Bsvoee

Figure 2.36: KVL allows addition of complex voltages.

The polarity marks for all three voltage sources are oriented in such a way that their stated
voltages should add to make the total voltage across the load resistor. Notice that although
magnitude and phase angle is given for each AC voltage source, no frequency value is specified.
If this is the case, it is assumed that all frequencies are equal, thus meeting our qualifications
for applying DC rules to an AC circuit (all figures given in complex form, all of the same
frequency). The setup of our equation to find total voltage appears as such:
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Eioa =E1 +E; + E5

Eiora = (22V 0 -64°) + (12V 0 35%) + (15V 0 0°
Graphically, the vectors add up as shown in Figure 2.37.

220 -64°

1500°

120 3%°

Figure 2.37: Graphic addition of vector voltages.

The sum of these vectors will be a resultant vector originating at the starting point for the
22 volt vector (dot at upper-left of diagram) and terminating at the ending point for the 15 volt
vector (arrow tip at the middle-right of the diagram): (Figure 2.38)

resultant vector

220 -64°

Figure 2.38: Resultant is equivalent to the vector sum of the three original voltages.

In order to determine what the resultant vector’s magnitude and angle are without re-
sorting to graphic images, we can convert each one of these polar-form complex numbers into
rectangular form and add. Remember, we’re adding these figures together because the polarity
marks for the three voltage sources are oriented in an additive manner:
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15V 00°=15+j0V
12V [0 35° = 9.8298 + [6.8829 V/

22V 0 -64°=9.6442 - j19.7735V

15 +j0 V
9.8298 +j6.8829V
+ 96442 -j19.7735V

34.4740 - j12.8906 V

In polar form, this equates to 36.8052 volts / -20.5018°. What this means in real terms
is that the voltage measured across these three voltage sources will be 36.8052 volts, lagging
the 15 volt (0° phase reference) by 20.5018°. A voltmeter connected across these points in
a real circuit would only indicate the polar magnitude of the voltage (36.8052 volts), not the
angle. An oscilloscope could be used to display two voltage waveforms and thus provide a phase
shift measurement, but not a voltmeter. The same principle holds true for AC ammeters: they
indicate the polar magnitude of the current, not the phase angle.

This is extremely important in relating calculated figures of voltage and current to real
circuits. Although rectangular notation is convenient for addition and subtraction, and was
indeed the final step in our sample problem here, it is not very applicable to practical measure-
ments. Rectangular figures must be converted to polar figures (specifically polar magnitude)
before they can be related to actual circuit measurements.

We can use SPICE to verify the accuracy of our results. In this test circuit, the 10 kQ)
resistor value is quite arbitrary. It’s there so that SPICE does not declare an open-circuit
error and abort analysis. Also, the choice of frequencies for the simulation (60 Hz) is quite
arbitrary, because resistors respond uniformly for all frequencies of AC voltage and current.
There are other components (notably capacitors and inductors) which do not respond uniformly
to different frequencies, but that is another subject! (Figure 2.39)

ac voltage addition
vl 1 0 ac 15 0 sin

v2 2 1 ac 12 35 sin
v3 3 2 ac 22 -64 sin

rli 3 0 10k

.ac lin 1 60 60 I’ musing a frequency of 60 Hz
.print ac v(3,0) vp(3,0) as a default val ue

.end

freq v(3) vp(3)

6. 000E+01 3.681E+01 -2.050E+01

Sure enough, we get a total voltage of 36.81 volts / -20.5° (with reference to the 15 volt
source, whose phase angle was arbitrarily stated at zero degrees so as to be the “reference”
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3 3

22V 0 -64° djvl
T
12V [0 35° @vz Rlilokﬂ
T
.

15V 0 0° @v?,

0 0

Figure 2.39: Spice circuit schematic.

waveform).

At first glance, this is counter-intuitive. How is it possible to obtain a total voltage of
just over 36 volts with 15 volt, 12 volt, and 22 volt supplies connected in series? With DC,
this would be impossible, as voltage figures will either directly add or subtract, depending on
polarity. But with AC, our “polarity” (phase shift) can vary anywhere in between full-aiding
and full-opposing, and this allows for such paradoxical summing.

What if we took the same circuit and reversed one of the supply’s connections? Its contri-
bution to the total voltage would then be the opposite of what it was before: (Figure 2.40)

+
22V O -64° E,
Polarity reversed on -
source E, ! _ load
12V 0 35° E, %
+
+
15V O Q° E;

Figure 2.40: Polarity of E; (12V) is reversed.

Note how the 12 volt supply’s phase angle is still referred to as 35°, even though the leads
have been reversed. Remember that the phase angle of any voltage drop is stated in reference
to its noted polarity. Even though the angle is still written as 35°, the vector will be drawn
180° opposite of what it was before: (Figure 2.41)

The resultant (sum) vector should begin at the upper-left point (origin of the 22 volt vector)
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12 00 35° (reversed) = 12 0 215°
or
-12 0 3%°

1500°

Figure 2.41: Direction of E, is reversed.

and terminate at the right arrow tip of the 15 volt vector: (Figure 2.42)

220 -64°

resultant vector

12 0 35° (reversed) = 12 00 215°
or
-12[B5 °

1500°

Figure 2.42: Resultant is vector sum of voltage sources.

The connection reversal on the 12 volt supply can be represented in two different ways in
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polar form: by an addition of 180° to its vector angle (making it 12 volts / 215°), or a reversal
of sign on the magnitude (making it -12 volts / 35°). Either way, conversion to rectangular
form yields the same result:

12V 0 35° (reversed) = 12V [0 215°
or
-12Vv 0 35° -0.8298 - |6.8829 V

The resulting addition of voltages in rectangular form, then:
15 +j0 \%
-0.8298 - |6.8829 V
+ 9.6442 -j19.7735V
14.8143 - j 26.6564 V

In polar form, this equates to 30.4964 V / -60.9368°. Once again, we will use SPICE to
verify the results of our calculations:

-9.8298 - [6.8829 V

ac voltage addition

vl 1 0 ac 15 0 sin

v2 1 2 ac 12 35 sin Note the reversal of node nunmbers 2 and 1
v3 3 2 ac 22 -64 sin to sinmulate the swappi ng of connections
ri 3 0 10k

.ac lin 1 60 60

.print ac v(3,0) vp(3,0)

. end

freq v(3) vp(3)

6. 000E+01 3. 050E+01 -6.094E+01
¢ REVIEW:

e All the laws and rules of DC circuits apply to AC circuits, with the exception of power
calculations (Joule’s Law), so long as all values are expressed and manipulated in complex
form, and all voltages and currents are at the same frequency.

e When reversing the direction of a vector (equivalent to reversing the polarity of an AC
voltage source in relation to other voltage sources), it can be expressed in either of two
different ways: adding 180° to the angle, or reversing the sign of the magnitude.

e Meter measurements in an AC circuit correspond to the polar magnitudes of calculated
values. Rectangular expressions of complex quantities in an AC circuit have no direct,
empirical equivalent, although they are convenient for performing addition and subtrac-
tion, as Kirchhoff’s Voltage and Current Laws require.
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2.9 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most
recent to first. See Appendix 2 (Contributor List) for dates and contact information.

Jason Starck (June 2000): HTML document formatting, which led to a much better-
looking second edition.
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3.1 AC resistor circuits

ET | —

(\, Er R

Er = Ex I =1k
Figure 3.1: Pure resistive AC circuit: resistor voltage and current are in phase.

If we were to plot the current and voltage for a very simple AC circuit consisting of a source
and a resistor (Figure 3.1), it would look something like this: (Figure 3.2)

57
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Time —

Figure 3.2: Voltage and current “in phase” for resistive circuit.

Because the resistor simply and directly resists the flow of electrons at all periods of time,
the waveform for the voltage drop across the resistor is exactly in phase with the waveform for
the current through it. We can look at any point in time along the horizontal axis of the plot
and compare those values of current and voltage with each other (any “snapshot” look at the
values of a wave are referred to as instantaneous values, meaning the values at that instant in
time). When the instantaneous value for current is zero, the instantaneous voltage across the
resistor is also zero. Likewise, at the moment in time where the current through the resistor
is at its positive peak, the voltage across the resistor is also at its positive peak, and so on. At
any given point in time along the waves, Ohm’s Law holds true for the instantaneous values of
voltage and current.

We can also calculate the power dissipated by this resistor, and plot those values on the
same graph: (Figure 3.3)

Time —

Figure 3.3: Instantaneous AC power in a pure resistive circuit is always positive.

Note that the power is never a negative value. When the current is positive (above the
line), the voltage is also positive, resulting in a power (p=ie) of a positive value. Conversely,
when the current is negative (below the line), the voltage is also negative, which results in a
positive value for power (a negative number multiplied by a negative number equals a positive
number). This consistent “polarity” of power tells us that the resistor is always dissipating
power, taking it from the source and releasing it in the form of heat energy. Whether the
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current is positive or negative, a resistor still dissipates energy.

3.2 AC inductor circuits

Inductors do not behave the same as resistors. Whereas resistors simply oppose the flow of
electrons through them (by dropping a voltage directly proportional to the current), inductors
oppose changes in current through them, by dropping a voltage directly proportional to the
rate of change of current. In accordance with Lenz’s Law, this induced voltage is always of such
a polarity as to try to maintain current at its present value. That is, if current is increasing
in magnitude, the induced voltage will “push against” the electron flow; if current is decreas-
ing, the polarity will reverse and “push with” the electron flow to oppose the decrease. This
opposition to current change is called reactance, rather than resistance.

Expressed mathematically, the relationship between the voltage dropped across the induc-
tor and rate of current change through the inductor is as such:

— di
e=1L o

The expression di/dt is one from calculus, meaning the rate of change of instantaneous cur-
rent (i) over time, in amps per second. The inductance (L) is in Henrys, and the instantaneous
voltage (e), of course, is in volts. Sometimes you will find the rate of instantaneous voltage
expressed as “v” instead of “e” (v = L di/dt), but it means the exact same thing. To show what
happens with alternating current, let’s analyze a simple inductor circuit: (Figure 3.4)

E; | — E
E L
6/ L

'Ll 90° I

Figure 3.4: Pure inductive circuit: Inductor current lags inductor voltage by 90°.

If we were to plot the current and voltage for this very simple circuit, it would look some-
thing like this: (Figure 3.5)

Remember, the voltage dropped across an inductor is a reaction against the change in cur-
rent through it. Therefore, the instantaneous voltage is zero whenever the instantaneous
current is at a peak (zero change, or level slope, on the current sine wave), and the instan-
taneous voltage is at a peak wherever the instantaneous current is at maximum change (the
points of steepest slope on the current wave, where it crosses the zero line). This results in a
voltage wave that is 90° out of phase with the current wave. Looking at the graph, the voltage
wave seems to have a “head start” on the current wave; the voltage “leads” the current, and
the current “lags” behind the voltage. (Figure 3.6)

Things get even more interesting when we plot the power for this circuit: (Figure 3.7)

Because instantaneous power is the product of the instantaneous voltage and the instanta-
neous current (p=ie), the power equals zero whenever the instantaneous current or voltage is
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Figure 3.5: Pure inductive circuit, waveforms.

current slope =0 current slope = max. (+)
voltage =0 voltage = max. (+)

; Time —
. current slope = 0
T voltage =0

current slope = max. (-)
voltage = max. (-)

Figure 3.6: Current lags voltage by 90° in a pure inductive circuit.

Figure 3.7: In a pure inductive circuit, instantaneous power may be positive or negative
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zero. Whenever the instantaneous current and voltage are both positive (above the line), the
power is positive. As with the resistor example, the power is also positive when the instanta-
neous current and voltage are both negative (below the line). However, because the current
and voltage waves are 90° out of phase, there are times when one is positive while the other is
negative, resulting in equally frequent occurrences of negative instantaneous power.

But what does negative power mean? It means that the inductor is releasing power back to
the circuit, while a positive power means that it is absorbing power from the circuit. Since the
positive and negative power cycles are equal in magnitude and duration over time, the inductor
releases just as much power back to the circuit as it absorbs over the span of a complete cycle.
What this means in a practical sense is that the reactance of an inductor dissipates a net
energy of zero, quite unlike the resistance of a resistor, which dissipates energy in the form of
heat. Mind you, this is for perfect inductors only, which have no wire resistance.

An inductor’s opposition to change in current translates to an opposition to alternating
current in general, which is by definition always changing in instantaneous magnitude and
direction. This opposition to alternating current is similar to resistance, but different in that
it always results in a phase shift between current and voltage, and it dissipates zero power.
Because of the differences, it has a different name: reactance. Reactance to AC is expressed
in ohms, just like resistance is, except that its mathematical symbol is X instead of R. To be
specific, reactance associate with an inductor is usually symbolized by the capital letter X with
a letter L as a subscript, like this: X;.

Since inductors drop voltage in proportion to the rate of current change, they will drop more
voltage for faster-changing currents, and less voltage for slower-changing currents. What this
means is that reactance in ohms for any inductor is directly proportional to the frequency of
the alternating current. The exact formula for determining reactance is as follows:

X, = 2rfL

If we expose a 10 mH inductor to frequencies of 60, 120, and 2500 Hz, it will manifest the
reactances in Table Figure 3.1.

Table 3.1: Reactance of a 10 mH inductor:

Frequency (Hertz) | Reactance (Ohms)
60 3.7699

120 7.5398

2500 157.0796

In the reactance equation, the term “27f” (everything on the right-hand side except the L)
has a special meaning unto itself. It is the number of radians per second that the alternating
current is “rotating” at, if you imagine one cycle of AC to represent a full circle’s rotation.
A radian is a unit of angular measurement: there are 27 radians in one full circle, just as
there are 360° in a full circle. If the alternator producing the AC is a double-pole unit, it will
produce one cycle for every full turn of shaft rotation, which is every 27 radians, or 360°. If
this constant of 27 is multiplied by frequency in Hertz (cycles per second), the result will be a
figure in radians per second, known as the angular velocity of the AC system.

Angular velocity may be represented by the expression 27f, or it may be represented by its
own symbol, the lower-case Greek letter Omega, which appears similar to our Roman lower-

“oo9,

case “w”: w. Thus, the reactance formula X; = 2xfL could also be written as X;, = wL.
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It must be understood that this “angular velocity” is an expression of how rapidly the AC
waveforms are cycling, a full cycle being equal to 27 radians. It is not necessarily representa-
tive of the actual shaft speed of the alternator producing the AC. If the alternator has more
than two poles, the angular velocity will be a multiple of the shaft speed. For this reason, w is
sometimes expressed in units of electrical radians per second rather than (plain) radians per
second, so as to distinguish it from mechanical motion.

Any way we express the angular velocity of the system, it is apparent that it is directly pro-
portional to reactance in an inductor. As the frequency (or alternator shaft speed) is increased
in an AC system, an inductor will offer greater opposition to the passage of current, and vice
versa. Alternating current in a simple inductive circuit is equal to the voltage (in volts) divided
by the inductive reactance (in ohms), just as either alternating or direct current in a simple re-
sistive circuit is equal to the voltage (in volts) divided by the resistance (in ohms). An example
circuit is shown here: (Figure 3.8)

10V /\D L =X 10 mH
60 Hz

Figure 3.8: Inductive reactance

(inductive reactance of 10 mH inductor at 60 Hz)
X, =3.7699 Q

E
X

10V
3.7699 Q

| =2.6526 A

However, we need to keep in mind that voltage and current are not in phase here. As was
shown earlier, the voltage has a phase shift of +90° with respect to the current. (Figure 3.9) If
we represent these phase angles of voltage and current mathematically in the form of complex
numbers, we find that an inductor’s opposition to current has a phase angle, too:
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Opposition __Voltage
Current
.. 10vOoo°
Opposition =
2.6526 A [D °

Opposition =3.7699 Q [ 90°
or

0+)3.7699 Q

For an inductor:

90° 90°

Opposition
(Xv)

Figure 3.9: Current lags voltage by 90° in an inductor.

Mathematically, we say that the phase angle of an inductor’s opposition to current is 90°,
meaning that an inductor’s opposition to current is a positive imaginary quantity. This phase
angle of reactive opposition to current becomes critically important in circuit analysis, espe-
cially for complex AC circuits where reactance and resistance interact. It will prove beneficial
to represent any component’s opposition to current in terms of complex numbers rather than
scalar quantities of resistance and reactance.

e REVIEW:

e Inductive reactance is the opposition that an inductor offers to alternating current due
to its phase-shifted storage and release of energy in its magnetic field. Reactance is
symbolized by the capital letter “X” and is measured in ohms just like resistance (R).

e Inductive reactance can be calculated using this formula: X; = 2#fLL

e The angular velocity of an AC circuit is another way of expressing its frequency, in units
of electrical radians per second instead of cycles per second. It is symbolized by the lower-
case Greek letter “omega,” or w.
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e Inductive reactance increases with increasing frequency. In other words, the higher the
frequency, the more it opposes the AC flow of electrons.

3.3 Series resistor-inductor circuits

In the previous section, we explored what would happen in simple resistor-only and inductor-
only AC circuits. Now we will mix the two components together in series form and investigate
the effects.

Take this circuit as an example to work with: (Figure 3.10)

R R
VWA A%

ET I —>IR ET SQ 10
©  RE 1 Ee  ER

ILl 70 |

E

E; =Ex+ E, R

| =1g=1,

Figure 3.10: Series resistor inductor circuit: Current lags applied voltage by 0° to 90°.

The resistor will offer 5 € of resistance to AC current regardless of frequency, while the
inductor will offer 3.7699 Q) of reactance to AC current at 60 Hz. Because the resistor’s re-
sistance is a real number (5 Q2 Z 02, or 5 + jO 2), and the inductor’s reactance is an imaginary
number (3.7699  / 90°, or 0 + j3.7699 ), the combined effect of the two components will be an
opposition to current equal to the complex sum of the two numbers. This combined opposition
will be a vector combination of resistance and reactance. In order to express this opposition
succinctly, we need a more comprehensive term for opposition to current than either resistance
or reactance alone. This term is called impedance, its symbol is Z, and it is also expressed in
the unit of ohms, just like resistance and reactance. In the above example, the total circuit
impedance is:

Za = (5 Q resistance) + (3.7699 Q inductive reactance)

Zow =5Q(R) + 3.7699Q (X,)

Ziow = (5Q 0 0% + (3.7699 Q [ 90%)
or

(5+j0 Q) + (0 +j3.7699 Q)

Zia =5+j3.7699Q or 6.262Q [ 37.016°
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Impedance is related to voltage and current just as you might expect, in a manner similar
to resistance in Ohm’s Law:
Ohm’s Law for AC circuits:

E=lz =E z-E
Z I

All guantities expressed in

complex, not scalar, form

In fact, this is a far more comprehensive form of Ohm’s Law than what was taught in DC
electronics (E=IR), just as impedance is a far more comprehensive expression of opposition to
the flow of electrons than resistance is. Any resistance and any reactance, separately or in
combination (series/parallel), can be and should be represented as a single impedance in an
AC circuit.

To calculate current in the above circuit, we first need to give a phase angle reference for
the voltage source, which is generally assumed to be zero. (The phase angles of resistive and
inductive impedance are always 0° and +90°, respectively, regardless of the given phase angles
for voltage or current).

| = E
4
ovoo
6.262 Q [ 37.016°

| = 1.597 A O -37.016°

As with the purely inductive circuit, the current wave lags behind the voltage wave (of the
source), although this time the lag is not as great: only 37.016° as opposed to a full 90° as was
the case in the purely inductive circuit. (Figure 3.11)

phase shift =
37.016°

Figure 3.11: Current lags voltage in a series L-R circuit.

For the resistor and the inductor, the phase relationships between voltage and current
haven’t changed. Voltage across the resistor is in phase (0° shift) with the current through
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it; and the voltage across the inductor is +90° out of phase with the current going through it.
We can verify this mathematically:

E=1Z
Er = lrZr
Er = (1.597 A 0 -37.016°)(5Q 1 0°)

Er =7.9847V O -37.016°
Notice that the phase angle of E, is equal to
the phase angle of the current.

The voltage across the resistor has the exact same phase angle as the current through it,
telling us that E and I are in phase (for the resistor only).

E=IZ
E =14,

E, = (1.597 A [ -37.016°)(3.7699 Q 0 90%)

E, = 6.0203V [ 52.984°

Notice that the phase angle of E, is exactly
90° more than the phase angle of the current.

The voltage across the inductor has a phase angle of 52.984°, while the current through the

inductor has a phase angle of -37.016°, a difference of exactly 90° between the two. This tells
us that E and I are still 90° out of phase (for the inductor only).

We can also mathematically prove that these complex values add together to make the total
voltage, just as Kirchhoff’s Voltage Law would predict:

Eiota = Er + EL
E,. = (7.9847 V [0 -37.016°) + (6.0203 V [ 52.984%

Eg =10V 0 0°

Let’s check the validity of our calculations with SPICE: (Figure 3.12)
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1 R
5Q
10V L =3 10 mH
60 Hz @
0 0

Figure 3.12: Spice circuit: R-L.

ac r-1 circuit

vl 1 0 ac 10 sin

ri125

120 10m

.ac lin 1 60 60

.print ac v(1,2) v(2,0) i(vl)
.print ac vp(1,2) vp(2,0) ip(vl)

. end

freq v(1, 2) v(2) i(vl)

6. 000E+01 7. 985E+00 6. 020E+00 1. 597E+00
freq vp(1,?2) vp(2) ip(vl)

6. O00E+01 -3. 702E+01 5. 298E+01 1. 430E+02

Interpreted SPICE results
Er=7.985V O -37.02°

E, =6.020V O 52.98°

| =1.597 A O 143.0°

Note that just as with DC circuits, SPICE outputs current figures as though they were
negative (180° out of phase) with the supply voltage. Instead of a phase angle of -37.016°,
we get a current phase angle of 143° (-37° + 180°). This is merely an idiosyncrasy of SPICE
and does not represent anything significant in the circuit simulation itself. Note how both
the resistor and inductor voltage phase readings match our calculations (-37.02° and 52.98°,
respectively), just as we expected them to.

With all these figures to keep track of for even such a simple circuit as this, it would be
beneficial for us to use the “table” method. Applying a table to this simple series resistor-
inductor circuit would proceed as such. First, draw up a table for E/I/Z figures and insert all
component values in these terms (in other words, don’t insert actual resistance or inductance
values in Ohms and Henrys, respectively, into the table; rather, convert them into complex
figures of impedance and write those in):
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R L Total

10+j0

E
100 0° Volts

| Amps

7 5+j0 0+j3.7699 ohms

500° 3.7699 00 90°

Although it isn’t necessary, I find it helpful to write both the rectangular and polar forms of
each quantity in the table. If you are using a calculator that has the ability to perform complex
arithmetic without the need for conversion between rectangular and polar forms, then this
extra documentation is completely unnecessary. However, if you are forced to perform complex
arithmetic “longhand” (addition and subtraction in rectangular form, and multiplication and
division in polar form), writing each quantity in both forms will be useful indeed.

Now that our “given” figures are inserted into their respective locations in the table, we can
proceed just as with DC: determine the total impedance from the individual impedances. Since
this is a series circuit, we know that opposition to electron flow (resistance or impedance) adds
to form the total opposition:

R L Total
10+j0
E
100 0° Volts
| Amps
7 5+]j0 0+j3.7699 5+]3.7699 ohms
500° 3.7699 00 90° 6.262 0 37.016° .~

Rule of series
circuits

Ziga =Zr*+Z,

Now that we know total voltage and total impedance, we can apply Ohm’s Law (I=E/Z) to
determine total current:
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R L Total

£ 10 +j0

100 0°

| 1.2751 - j0.9614
1.597 0 -37.016°

5+j3.7699
6.262 [ 37.016°

Volts

Amps

5+j0
500°

0+j3.7699

Ohms
3.7699 O 90°

Just as with DC, the total current in a series AC circuit is shared equally by all components.
This is still true because in a series circuit there is only a single path for electrons to flow,
therefore the rate of their flow must uniform throughout. Consequently, we can transfer the
figures for current into the columns for the resistor and inductor alike:

R L Total
10+j0
E
100 0° Volts
1.2751-j0.9614 1.2751-j0.9614 1.2751-j0.9614 Amps
1.597 0 -37.016° 1.597 O -37.016° 1.597 0 -37.016° -
5+j0 0+j3.7699 5+j3.7699
Ohms
500° 3.7699 O 90° 6.262 0 37.016°

Rule of series
circuits:

lota = IR =1L

Now all that’s left to figure is the voltage drop across the resistor and inductor, respectively.
This is done through the use of Ohm’s Law (E=IZ), applied vertically in each column of the
table:
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R L Total
6.3756 - j4.8071 3.6244 + j4.8071 10+j0 Vol
7.9847 01 -37.016° | 6.0203 [ 52.984° 100 0° olts
1.2751 - j0.9614 1.2751 - j0.9614 1.2751 - j0.9614 Amps
1.597 00 -37.016° 1.597 0 -37.016° 1.597 O -37.016°
5+j0 0 +}3.7699 5 +3.7699
Ohms
500° 3.7699 J 90° 6.262 [0 37.016°
Ohm’s Ohm’s
Law Law
E=1Z E=I1Z

And with that, our table is complete. The exact same rules we applied in the analysis of DC
circuits apply to AC circuits as well, with the caveat that all quantities must be represented
and calculated in complex rather than scalar form. So long as phase shift is properly repre-
sented in our calculations, there is no fundamental difference in how we approach basic AC
circuit analysis versus DC.

Now is a good time to review the relationship between these calculated figures and read-
ings given by actual instrument measurements of voltage and current. The figures here that
directly relate to real-life measurements are those in polar notation, not rectangular! In other
words, if you were to connect a voltmeter across the resistor in this circuit, it would indicate
7.9847 volts, not 6.3756 (real rectangular) or 4.8071 (imaginary rectangular) volts. To describe
this in graphical terms, measurement instruments simply tell you how long the vector is for
that particular quantity (voltage or current).

Rectangular notation, while convenient for arithmetical addition and subtraction, is a more
abstract form of notation than polar in relation to real-world measurements. As I stated before,
I will indicate both polar and rectangular forms of each quantity in my AC circuit tables simply
for convenience of mathematical calculation. This is not absolutely necessary, but may be
helpful for those following along without the benefit of an advanced calculator. If we were to
restrict ourselves to the use of only one form of notation, the best choice would be polar, because
it is the only one that can be directly correlated to real measurements.

Impedance (Z) of a series R-L circuit may be calculated, given the resistance (R) and the
inductive reactance (Xy). Since E=IR, E=IX;, and E=IZ, resistance, reactance, and impedance
are proportional to voltage, respectively. Thus, the voltage phasor diagram can be replaced by
a similar impedance diagram. (Figure 3.13)

Example:
Given: A 40 Q resistor in series with a 79.58 millihenry inductor. Find the impedance at 60
hertz.

X, = 2nfL

X, = 27-60.79. 58x1073
X, = 30 Q
Z=R+jX

Z =40 +j30
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Voltage Impedance

Figure 3.13: Series: R-L circuit Impedance phasor diagram.

|Z| = sqrt(40% + 30%) =50 Q
/Z = arctangent (30/40) = 36.87°
Z =40 + j30 = 50/36.87°

¢ REVIEW:

e Impedance is the total measure of opposition to electric current and is the complex (vec-
tor) sum of (“real”) resistance and (“imaginary”) reactance. It is symbolized by the letter
“Z” and measured in ohms, just like resistance (R) and reactance (X).

e Impedances (Z) are managed just like resistances (R) in series circuit analysis: series
impedances add to form the total impedance. Just be sure to perform all calculations in
complex (not scalar) form! Zr i =21 +Zo + . . . Z,,

e A purely resistive impedance will always have a phase angle of exactly 0° (Zr =R Q /
0°).

e A purely inductive impedance will always have a phase angle of exactly +90° (Z;, = X, Q
£ 90°).

e Ohm’s Law for AC circuits: E=1Z;1=E/Z ;Z =E/l

e When resistors and inductors are mixed together in circuits, the total impedance will
have a phase angle somewhere between 0° and +90°. The circuit current will have a
phase angle somewhere between 0° and -90°.

e Series AC circuits exhibit the same fundamental properties as series DC circuits: cur-
rent is uniform throughout the circuit, voltage drops add to form the total voltage, and
impedances add to form the total impedance.

3.4 Parallel resistor-inductor circuits

Let’s take the same components for our series example circuit and connect them in parallel:
(Figure 3.14)

Because the power source has the same frequency as the series example circuit, and the
resistor and inductor both have the same values of resistance and inductance, respectively,



72 CHAPTER 3. REACTANCE AND IMPEDANCE - INDUCTIVE

E I .
E |—> -53° |
RiR '1L v RI50 L0
VA
L

| =g+ 1,

E=Ex=F

Figure 3.14: Parallel R-L circuit.

they must also have the same values of impedance. So, we can begin our analysis table with
the same “given” values:

R L Total
10+j0
E
100 0° Volts
| Amps
7 5+]j 00 0+ 13.76990 ohms
500 3.7699 O 90

The only difference in our analysis technique this time is that we will apply the rules of
parallel circuits instead of the rules for series circuits. The approach is fundamentally the
same as for DC. We know that voltage is shared uniformly by all components in a parallel
circuit, so we can transfer the figure of total voltage (10 volts / 0°) to all components columns:

R L Total
10+j0 10+j0 10+j0
E 0 o o Volts
1000 1000 1000
| Amps
7 5+j0 0+)3.7699 Ohms
500° 3.7699 [0 90°
Rule of parallel
circuits:
Eioa =Er=EL

Now we can apply Ohm’s Law (I=E/Z) vertically to two columns of the table, calculating
current through the resistor and current through the inductor:
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R L Total
£ 10+]0 10+j0 10+]0 Vol
100 0° 100 0° 100 0° olts
| 2+j0 0-]2.6526 Amps
200° 26526 [1 -90°
7 5+j0 0+j3.7699 Ohms
50 0° 3.7699 [0 90°
Ohm'’s Ohm'’s
Law Law
1=E 1=E
Z Z

Just as with DC circuits, branch currents in a parallel AC circuit add to form the total
current (Kirchhoff’s Current Law still holds true for AC as it did for DC):

R L Total
E 10+j0 10+j0 10+j0 |
100 0° 100 0° 100 0° Volts
| 2+0 0-]2.6526 2-]2.6526 Amps
200° 2.6526 [ -90° 332210 -52984° |0
. 5+j0 0+]37699 Ohme
500 3.7699 0 90

Rule of parallel
circuits:

lioa =g + 1

Finally, total impedance can be calculated by using Ohm’s Law (Z=E/I) vertically in the
“Total” column. Incidentally, parallel impedance can also be calculated by using a reciprocal
formula identical to that used in calculating parallel resistances.

The only problem with using this formula is that it typically involves a lot of calculator
keystrokes to carry out. And if you’re determined to run through a formula like this “longhand,”
be prepared for a very large amount of work! But, just as with DC circuits, we often have
multiple options in calculating the quantities in our analysis tables, and this example is no
different. No matter which way you calculate total impedance (Ohm’s Law or the reciprocal
formula), you will arrive at the same figure:
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R L Totad
E 10+j0 10+j0 10+j0 Vol
1000° 1000 1000 olts
2+j0 0-j2.6526 2-j2.6526
I Amps
200° 2.6526 0 -90° 3.322 0 -52.984°
. 5+j0 0+]3.7699 18122+/24085 | o
500° 3.7699 0 90° 3.0102 O 52.984°
Ohm’s Rule of parallel
Law or circuits:
E 1
== Z = -
I total 1 1
—_t
Zr Z,
¢ REVIEW:

e Impedances (Z) are managed just like resistances (R) in parallel circuit analysis: parallel
impedances diminish to form the total impedance, using the reciprocal formula. Just be
sure to perform all calculations in complex (not scalar) form! Zr,;o = 1/(1/Z1 + 1/Z5 + . . .
1/Z,,)

e Ohm’s Law for AC circuits: E=1Z ;1 =E/Z ;Z = E/I

e When resistors and inductors are mixed together in parallel circuits (just as in series
circuits), the total impedance will have a phase angle somewhere between 0° and +90°.
The circuit current will have a phase angle somewhere between 0° and -90°.

e Parallel AC circuits exhibit the same fundamental properties as parallel DC circuits:
voltage is uniform throughout the circuit, branch currents add to form the total current,
and impedances diminish (through the reciprocal formula) to form the total impedance.

3.5 Inductor quirks

In an ideal case, an inductor acts as a purely reactive device. That is, its opposition to AC
current is strictly based on inductive reaction to changes in current, and not electron friction as
is the case with resistive components. However, inductors are not quite so pure in their reactive
behavior. To begin with, they’re made of wire, and we know that all wire possesses some
measurable amount of resistance (unless its superconducting wire). This built-in resistance
acts as though it were connected in series with the perfect inductance of the coil, like this:
(Figure 3.15)

Consequently, the impedance of any real inductor will always be a complex combination of
resistance and inductive reactance.

Compounding this problem is something called the skin effect, which is AC’s tendency to
flow through the outer areas of a conductor’s cross-section rather than through the middle.
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Equivalent circuit for a real inductor

% Wire resistance
R

3 Ideal inductor
L

Figure 3.15: Inductor Equivalent circuit of a real inductor.

When electrons flow in a single direction (DC), they use the entire cross-sectional area of the
conductor to move. Electrons switching directions of flow, on the other hand, tend to avoid
travel through the very middle of a conductor, limiting the effective cross-sectional area avail-
able. The skin effect becomes more pronounced as frequency increases.

Also, the alternating magnetic field of an inductor energized with AC may radiate off into
space as part of an electromagnetic wave, especially if the AC is of high frequency. This ra-
diated energy does not return to the inductor, and so it manifests itself as resistance (power
dissipation) in the circuit.

Added to the resistive losses of wire and radiation, there are other effects at work in iron-
core inductors which manifest themselves as additional resistance between the leads. When
an inductor is energized with AC, the alternating magnetic fields produced tend to induce
circulating currents within the iron core known as eddy currents. These electric currents in
the iron core have to overcome the electrical resistance offered by the iron, which is not as
good a conductor as copper. Eddy current losses are primarily counteracted by dividing the
iron core up into many thin sheets (laminations), each one separated from the other by a
thin layer of electrically insulating varnish. With the cross-section of the core divided up into
many electrically isolated sections, current cannot circulate within that cross-sectional area
and there will be no (or very little) resistive losses from that effect.

As you might have expected, eddy current losses in metallic inductor cores manifest them-
selves in the form of heat. The effect is more pronounced at higher frequencies, and can be so
extreme that it is sometimes exploited in manufacturing processes to heat metal objects! In
fact, this process of “inductive heating” is often used in high-purity metal foundry operations,
where metallic elements and alloys must be heated in a vacuum environment to avoid contam-
ination by air, and thus where standard combustion heating technology would be useless. It is
a “non-contact” technology, the heated substance not having to touch the coil(s) producing the
magnetic field.

In high-frequency service, eddy currents can even develop within the cross-section of the
wire itself, contributing to additional resistive effects. To counteract this tendency, special
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wire made of very fine, individually insulated strands called Litz wire (short for Litzendraht)
can be used. The insulation separating strands from each other prevent eddy currents from
circulating through the whole wire’s cross-sectional area.

Additionally, any magnetic hysteresis that needs to be overcome with every reversal of the
inductor’s magnetic field constitutes an expenditure of energy that manifests itself as resis-
tance in the circuit. Some core materials (such as ferrite) are particularly notorious for their
hysteretic effect. Counteracting this effect is best done by means of proper core material selec-
tion and limits on the peak magnetic field intensity generated with each cycle.

Altogether, the stray resistive properties of a real inductor (wire resistance, radiation losses,
eddy currents, and hysteresis losses) are expressed under the single term of “effective resis-
tance:” (Figure 3.16)

Equivalent circuit for a real inductor

% "Effective" resistance
R

3 Ideal inductor
L

Figure 3.16: Equivalent circuit of a real inductor with skin-effect, radiation, eddy current, and
hysteresis losses.

It is worthy to note that the skin effect and radiation losses apply just as well to straight
lengths of wire in an AC circuit as they do a coiled wire. Usually their combined effect is too
small to notice, but at radio frequencies they can be quite large. A radio transmitter antenna,
for example, is designed with the express purpose of dissipating the greatest amount of energy
in the form of electromagnetic radiation.

Effective resistance in an inductor can be a serious consideration for the AC circuit designer.
To help quantify the relative amount of effective resistance in an inductor, another value exists
called the Q factor, or “quality factor” which is calculated as follows:

Xy
Q R

The symbol “Q” has nothing to do with electric charge (coulombs), which tends to be con-
fusing. For some reason, the Powers That Be decided to use the same letter of the alphabet to
denote a totally different quantity.

The higher the value for “Q,” the “purer” the inductor is. Because its so easy to add ad-
ditional resistance if needed, a high-Q inductor is better than a low-Q inductor for design
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purposes. An ideal inductor would have a Q of infinity, with zero effective resistance.

Because inductive reactance (X) varies with frequency, so will Q. However, since the resis-
tive effects of inductors (wire skin effect, radiation losses, eddy current, and hysteresis) also
vary with frequency, Q does not vary proportionally with reactance. In order for a Q value to
have precise meaning, it must be specified at a particular test frequency.

Stray resistance isn’t the only inductor quirk we need to be aware of. Due to the fact that the
multiple turns of wire comprising inductors are separated from each other by an insulating gap
(air, varnish, or some other kind of electrical insulation), we have the potential for capacitance
to develop between turns. AC capacitance will be explored in the next chapter, but it suffices
to say at this point that it behaves very differently from AC inductance, and therefore further
“taints” the reactive purity of real inductors.

3.6 More on the “skin effect”

As previously mentioned, the skin effect is where alternating current tends to avoid travel
through the center of a solid conductor, limiting itself to conduction near the surface. This
effectively limits the cross-sectional conductor area available to carry alternating electron flow,
increasing the resistance of that conductor above what it would normally be for direct current:
(Figure 3.17)

Cross-sectional area of a round
conductor available for conducting
DC current

"DC resistance"

Cross-sectional area of the same
conductor available for conducting
low-frequency AC

"AC resistance"
Cross-sectional area of the same

conductor available for conducting
high-frequency AC

"AC resistance"

Figure 3.17: Skin effect: skin depth decreases with increasing frequency.
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The electrical resistance of the conductor with all its cross-sectional area in use is known
as the “DC resistance,” the “AC resistance” of the same conductor referring to a higher figure
resulting from the skin effect. As you can see, at high frequencies the AC current avoids travel
through most of the conductor’s cross-sectional area. For the purpose of conducting current,
the wire might as well be hollow!

In some radio applications (antennas, most notably) this effect is exploited. Since radio-
frequency (“RF”) AC currents wouldn’t travel through the middle of a conductor anyway, why
not just use hollow metal rods instead of solid metal wires and save both weight and cost?
(Figure 3.18) Most antenna structures and RF power conductors are made of hollow metal
tubes for this reason.

In the following photograph you can see some large inductors used in a 50 kW radio trans-
mitting circuit. The inductors are hollow copper tubes coated with silver, for excellent conduc-
tivity at the “skin” of the tube:

Figure 3.18: High power inductors formed from hollow tubes.

The degree to which frequency affects the effective resistance of a solid wire conductor is
impacted by the gauge of that wire. As a rule, large-gauge wires exhibit a more pronounced
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skin effect (change in resistance from DC) than small-gauge wires at any given frequency. The
equation for approximating skin effect at high frequencies (greater than 1 MHz) is as follows:

Rac = (Rod (1Y T
Where,
Rac = AC resistance at given frequency "f"
Rpc = Resistance at zero frequency (DC)

k = Wire gage factor (see table below)

f = Frequency of AC in MHz (MegaHertz)

Table 3.2 gives approximate values of “k” factor for various round wire sizes.

Table 3.2: “k” factor for various AWG wire sizes.

gage size | k factor || gage size | k factor
4/0 124.5 8 34.8

2/0 99.0 10 27.6

1/0 88.0 14 17.6

2 69.8 18 10.9

4 55.5 22 6.86

6 47.9 - -

For example, a length of number 10-gauge wire with a DC end-to-end resistance of 25 Q)
would have an AC (effective) resistance of 2.182 k) at a frequency of 10 MHz:

Rac = (Rod)(K)V/ f
Rac = (25Q)(27.6) \/ 10

Rac = 2.182kQ

Please remember that this figure is not impedance, and it does not consider any reactive
effects, inductive or capacitive. This is simply an estimated figure of pure resistance for the
conductor (that opposition to the AC flow of electrons which does dissipate power in the form
of heat), corrected for the skin effect. Reactance, and the combined effects of reactance and
resistance (impedance), are entirely different matters.

3.7 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most
recent to first. See Appendix 2 (Contributor List) for dates and contact information.
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Jim Palmer (June 2001): Identified and offered correction for typographical error in com-
plex number calculation.

Jason Starck (June 2000): HTML document formatting, which led to a much better-
looking second edition.
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4,1 AC resistor circuits

Er || —

(\, Er R

Figure 4.1: Pure resistive AC circuit: voltage and current are in phase.

If we were to plot the current and voltage for a very simple AC circuit consisting of a source
and a resistor, (Figure 4.1) it would look something like this: (Figure 4.2)

Because the resistor allows an amount of current directly proportional to the voltage across
it at all periods of time, the waveform for the current is exactly in phase with the waveform for

81
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Time —

Figure 4.2: Voltage and current “in phase” for resistive circuit.

the voltage. We can look at any point in time along the horizontal axis of the plot and compare
those values of current and voltage with each other (any “snapshot” look at the values of a wave
are referred to as instantaneous values, meaning the values at that instant in time). When the
instantaneous value for voltage is zero, the instantaneous current through the resistor is also
zero. Likewise, at the moment in time where the voltage across the resistor is at its positive
peak, the current through the resistor is also at its positive peak, and so on. At any given point
in time along the waves, Ohm’s Law holds true for the instantaneous values of voltage and
current.

We can also calculate the power dissipated by this resistor, and plot those values on the
same graph: (Figure 4.3)

Time —

Figure 4.3: Instantaneous AC power in a resistive circuit is always positive.

Note that the power is never a negative value. When the current is positive (above the
line), the voltage is also positive, resulting in a power (p=ie) of a positive value. Conversely,
when the current is negative (below the line), the voltage is also negative, which results in a
positive value for power (a negative number multiplied by a negative number equals a positive
number). This consistent “polarity” of power tells us that the resistor is always dissipating
power, taking it from the source and releasing it in the form of heat energy. Whether the
current is positive or negative, a resistor still dissipates energy.
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4.2 AC capacitor circuits

Capacitors do not behave the same as resistors. Whereas resistors allow a flow of electrons
through them directly proportional to the voltage drop, capacitors oppose changes in voltage
by drawing or supplying current as they charge or discharge to the new voltage level. The flow
of electrons “through” a capacitor is directly proportional to the rate of change of voltage across
the capacitor. This opposition to voltage change is another form of reactance, but one that is
precisely opposite to the kind exhibited by inductors.

Expressed mathematically, the relationship between the current “through” the capacitor
and rate of voltage change across the capacitor is as such:

i=C —
dt

The expression de/dt is one from calculus, meaning the rate of change of instantaneous
voltage (e) over time, in volts per second. The capacitance (C) is in Farads, and the instan-
taneous current (i), of course, is in amps. Sometimes you will find the rate of instantaneous
voltage change over time expressed as dv/dt instead of de/dt: using the lower-case letter “v”
instead or “e” to represent voltage, but it means the exact same thing. To show what happens
with alternating current, let’s analyze a simple capacitor circuit: (Figure 4.4)

ET I —>

(\/ VC::C

Er =B |=I¢

Figure 4.4: Pure capacitive circuit: capacitor voltage lags capacitor current by 90°

If we were to plot the current and voltage for this very simple circuit, it would look some-
thing like this: (Figure 4.5)

Figure 4.5: Pure capacitive circuit waveforms.

Remember, the current through a capacitor is a reaction against the change in voltage
across it. Therefore, the instantaneous current is zero whenever the instantaneous voltage is
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at a peak (zero change, or level slope, on the voltage sine wave), and the instantaneous current
is at a peak wherever the instantaneous voltage is at maximum change (the points of steepest
slope on the voltage wave, where it crosses the zero line). This results in a voltage wave that
is -90° out of phase with the current wave. Looking at the graph, the current wave seems to
have a “head start” on the voltage wave; the current “leads” the voltage, and the voltage “lags”
behind the current. (Figure 4.6)

voltage slope =0 voltage slope = max. (+)
current=0 current = max. (+)

| |

e =
i —_— e
Time —
T X\ voltage slope = 0
current=0

voltage slope = max. (-)
current = max. (-)

Figure 4.6: Voltage lags current by 90° in a pure capacitive circuit.

As you might have guessed, the same unusual power wave that we saw with the simple
inductor circuit is present in the simple capacitor circuit, too: (Figure 4.7)

Figure 4.7: In a pure capacitive circuit, the instantaneous power may be positive or negative.

As with the simple inductor circuit, the 90 degree phase shift between voltage and current
results in a power wave that alternates equally between positive and negative. This means
that a capacitor does not dissipate power as it reacts against changes in voltage; it merely
absorbs and releases power, alternately.
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A capacitor’s opposition to change in voltage translates to an opposition to alternating volt-
age in general, which is by definition always changing in instantaneous magnitude and direc-
tion. For any given magnitude of AC voltage at a given frequency, a capacitor of given size will
“conduct” a certain magnitude of AC current. Just as the current through a resistor is a func-
tion of the voltage across the resistor and the resistance offered by the resistor, the AC current
through a capacitor is a function of the AC voltage across it, and the reactance offered by the
capacitor. As with inductors, the reactance of a capacitor is expressed in ohms and symbolized
by the letter X (or X to be more specific).

Since capacitors “conduct” current in proportion to the rate of voltage change, they will pass
more current for faster-changing voltages (as they charge and discharge to the same voltage
peaks in less time), and less current for slower-changing voltages. What this means is that
reactance in ohms for any capacitor is inversely proportional to the frequency of the alternating
current. (Table 4.1)

1
2mC

C:

Table 4.1: Reactance of a 100 uF capacitor:

Frequency (Hertz) | Reactance (Ohms)
60 26.5258

120 13.2629

2500 0.6366

Please note that the relationship of capacitive reactance to frequency is exactly opposite
from that of inductive reactance. Capacitive reactance (in ohms) decreases with increasing AC
frequency. Conversely, inductive reactance (in ohms) increases with increasing AC frequency.
Inductors oppose faster changing currents by producing greater voltage drops; capacitors op-
pose faster changing voltage drops by allowing greater currents.

As with inductors, the reactance equation’s 2xf term may be replaced by the lower-case
Greek letter Omega (w), which is referred to as the angular velocity of the AC circuit. Thus,
the equation X = 1/(27fC) could also be written as X = 1/(wC), with w cast in units of radians
per second.

Alternating current in a simple capacitive circuit is equal to the voltage (in volts) divided
by the capacitive reactance (in ohms), just as either alternating or direct current in a simple
resistive circuit is equal to the voltage (in volts) divided by the resistance (in ohms). The
following 